Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High-temperature constitutive equations of SCM920 steel based on friction correction
Authors: Lan Yi Gong Hongying You Jin Wu Yue Yang Jingqi Qiu Wenyu  
Unit: (School of Materials Science and Engineering  Shanghai University of Engineering Science  Shanghai 201620  China) 
KeyWords: hot compression  stress-strain curve  friction correction  constitutive model  Deform-3D 
ClassificationCode:TG386
year,vol(issue):pagenumber:2025,50(4):248-256
Abstract:

 Under the conditions of the deformation temperature of 800-1000 ℃ and the strain rate of 0.1-1 s-1, a hot compression test of SCM920 steel with a compression amount of 60% was conducted by thermal simulation test machine Gleeble-3800 to obtain its high-temperature stress-strain curves. Then, by calculating the coefficient of expansion, it was determined that the friction effect had a significant impact on the flow stress, and the curve was corrected by friction. Furthermore, based on the Arrhenius equation and the Zener-Hollomon equation, a hyperbolic sine constitutive equation suitable for SCM920 steel was constructed, and on this basis, the hot compression process under different deformation conditions was numerically simulated by finite element software Deform-3D to research the influences of deformation temperature and strain rate on stress and strain. The results show that the flow stress of SCM920 steel significantly decreases with the decreasing of strain rate and the increasing of deformation temperature, and the friction effect has a significant impact on the flow stress and gradually increases with the increasing of deformation degree. The overall trend of the stress-strain curve is consistent before and after friction correction. The increase of deformation temperature effectively reduces the flow stress and improves the deformation capacity of metal, and the increase of strain rate increases the maximum principal stress and enhances the stress change gradient of specimen.

 
Funds:
基金项目:上海市自然科学基金资助项目(20ZR1422700);上海工程技术大学校企产学合作资助项目(0235-E4-6000-24-0143-(24)CL-021)
AuthorIntro:
作者简介:兰毅(2000-),男,硕士研究生
Reference:

 
[1]刘建宇,张留军,张心金,等.井口头锻件用AISI 4140钢高温热压缩变形行为研究
[J].天津理工大学学报,2021,37(2):30-35.


 

Liu J Y,Zhang L J,Zhang X J,et al.Study on high temperature hot compression deformation behaviour of AISI 4140 steel for wellhead head forgings
[J]. Journal of Tianjin Polytechnic University,2021,37(2):30-35.

 


[2]Mahender T, Balasundar I, Gupta A, et al. Metamodels to describe the high temperature deformation behaviour of Al 2014, 2wt% TiB2 composite
[J]. Advances in Materials and Processing Technologies,2022,8(4):2097-2109.

 


[3]Chen G X, Lu X Y, Yan J, et al. High-temperature deformation behavior of M50 steel
[J]. Metals, 2022, 12(4): 541.

 


[4]Song C N, Cao J G, Xiao J, et al.High-temperature constitutive relationship involving phase transformation for non-oriented electrical steel based on PSO-DNN approach
[J].Materials Today Communications,2023,34: 105210.

 


[5]Sani S A, Ebrahimi G R, Vafaeenezhad H, et al. Modeling of hot deformation behavior and prediction of flow stress in a magnesium alloy using constitutive equation and artificial neural network (ANN) model
[J]. Journal of Magnesium and Alloys, 2018, 6(2): 134-144.

 

 

 


[6]邱仟,王克鲁,李鑫,等.摩擦效应和温度效应对SP700钛合金热压缩流动应力的影响
[J]. 特种铸造及有色合金,2022,42(1): 59-63.

 

Qiu Q, Wang K L, Li X, et al. Influence of friction effect and temperature effect on the flow stress of SP700 titanium alloy in hot compression
[J].Special Casting & Nonferrous Alloys,2022,42(1): 59-63.

 

 


[7]周靖,王宝雨,徐伟力,等.耦合损伤的22MnB5热变形本构模型
[J].北京科技大学学报,2013,35(11):1450-1457.

 

Zhou J, Wang B Y, Xu W L, et al. A 22MnB5 thermal deformation constitutive model with coupled damage
[J]. Journal of University of Science and Technology Beijing, 2013,35 (11): 1450-1457.

 


[8]刘忠煜,陈雨琳,柳志铖,等.微合金化8630钢高温热压缩变形行为研究
[J].钢铁研究学报,2023,35(12):1548-1559.

 

Liu Z Y, Chen Y L, Liu Z C, et al. Study on the high-temperature hot compression deformation behavior of microalloyed 8630 steel
[J]. Journal of Iron and Steel Research, 2023,35 (12): 1548-1559.

 


[9]李晗,李晓,张雪姣,等.9Cr3W3Co钢热变形行为研究
[J].大型铸锻件,2023(6): 30-34,39.

 

Li H, Li X, Zhang X J, et al. Study on heat deformation behavior of 9Cr3W3Co steel
[J]. Heavy Casting and Forging,2023(6): 30-34,39.

 

 


[10]陈正宗,刘正东,包汉生.耐热合金热压缩修正后本构方程及热加工图
[J].钢铁研究学报,2015,27(9):44-48.

 

Chen Z Z, Liu Z D, Bao H S. Modified constitutive equation and hot working diagram of heat-resistant alloys after hot compression
[J]. Journal of Iron and Steel Research, 2015,27 (9): 44-48.

 

 


[11]廉学魁,韩顺,刘跃,等.基于摩擦修正的GE1014钢热本构方程及热加工图
[J].锻压技术,2023,48(3):219-226.

 

Lian X K,Han S,Liu Y, et al. Thermal constitutive equation and hot working diagram of GE1014 steel based on friction modification
[J]. Forging & Stamping Technology,2023,48(3):219-226.

 

 


[12]武建国,安红萍,刘俐利,等.基于摩擦修正的SA508-3钢高温本构方程
[J].锻压技术,2020,45(12): 178-182,190.

 

Wu J G, An H P, Liu L L, et al. High-temperature constitutive equation of SA508-3 steel based on friction modification
[J]. Forging & Stamping Technology,2020,45(12): 178-182,190.

 

 


[13]Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming
[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143.

 


[14]Wanjara P, Jahazi M, Monajati H, et al. Hot working behavior of near-α alloy IMI834
[J]. Materials Science and Engineering: A, 2005, 396(1-2): 50-60.

 


[15]Zhou H T, Kong F T, Wang X P,et al. Hot deformation behavior and microstructural evolution of as-forged Ti-44Al-8Nb-(W,B,Y) alloy with nearly lamellar microstructure
[J]. Intermetallics, 2017, 81: 62-72.

 


[16]尤黎明,杜伟,董晓坤,等.基于Arrhenius方程氯丁胶管内胶应力-应变曲线预测及其扣压性能的计算仿真
[J].青岛科技大学学报(自然科学版),2021,42(6):68-73.

 

You L M, Du W, Dong X K, et al. Prediction of stress-strain curve of chloroprene rubber tube internal adhesive based on Arrhenius equation and computational simulation of its clamping performance
[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2021, 42 (6): 68-73.

 


[17]毛欢,韩莹莹.基于应变补偿Arrhenius模型的TC20钛合金本构方程研究
[J].铸造技术,2018,39(9):1939-1942,1947.

 

Mao H, Han Y Y. Study on constitutive equations of TC20 titanium alloy based on strain compensation Arrhenius model
[J]. Casting Technology, 2018, 39 (9): 1939-1942,1947.

 


[18]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel
[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 


[19]卢金武,王磊,范晓杰,等.TC18钛合金等温锻造过程的数值模拟
[J].湖南有色金属,2023,39(5):65-68,83.

 

 Lu J W, Wang L, Fan X J, et al. Numerical simulation of isothermal forging process of TC18 titanium alloy
[J]. Hunan Nonferrous Metals, 2023,39 (5): 65-68,83.

 


[20]陶成,崔霞,欧阳德来,等.TC21钛合金热压缩工艺数值模拟与实验研究
[J].塑性工程学报,2023,30(8):195-201.

 

Tao C, Cui X, Ouyang D L, et al. Numerical simulation and experimental research on TC21 titanium alloy hot compression process
[J]. Journal of Plasticity Engineering, 2023,30 (8): 195-201.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com