Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Work hardening behavior of 304L antibacterial austenitic stainless steel under different deformation amounts
Authors: Zhao Lidong1  Pang Qihang1  Xu Mei2  Li Weijuan1  Huo Yu1  Wang Chong1 
Unit: 1.School of Materials and Metallurgy University of Science and Technology Liaoning Anshan 114051 China 2. State Key Laboratory of Advanced Stainless Steel  Taiyuan Iron and Steel Group Company Limited  Taiyuan 030003  China 
KeyWords: austenitic stainless steel  grain size  microstructure  deformation amount  work hardening 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2025,50(5):245-252
Abstract:

The influences of different pre-tensile strain amounts (8%, 20%, 30% and 40%) on the work hardening behavior of 304L austenitic stainless steel was systematically investigated by scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and tensile testing. The results indicate that as the strain increases, the effective average grain size of test steel decreases from 5.12 μm to 3.85 μm, and the aspect ratio of grain gradually increases to 2.8∶1. Strain-induced martensitic transformation occurred during deformation,with the volume fraction of deformation martensitic increasing from 0.47% to 3.2%. The tensile strength of test steel increases from 638.06 MPa to 920.51 MPa, the yield strength increases from 320.52 MPa to 897.67 MPa. The work hardening ability of test steel increases with the increasing of strain, its main strengthening mechanisms are twinning strengthening, deformation martensite strengthening and dislocation strengthening. When the strain is 0%-20%, twinning strengthening is dominant, and the test steel has good plastic elongation and strength.

Funds:
国家自然科学基金资助项目(52004122)
AuthorIntro:
作者简介:赵立冬(2000-),男,硕士研究生,E-mail:864609566@qq.com;通信作者:庞启航(1986-),男,博士,副教授,E-mail:qihang25@163.com
Reference:


[1]徐鸣悦,王丛,李运刚,等. 抗菌不锈钢的研究进展
[J]. 铸造技术,2016, 37(6): 1085-1089.


 

Xu M Y, Wang C, Li Y G, et al.Research progress of antimicrobial stainless steel
[J]. Foundry Technology, 2016, 37(6): 1085-1089.

 


[2]叶丽芳,陈惠波,林照亮,等. 不锈钢抗菌技术研究进展
[J]. 热加工工艺,2014, 43(20): 10-14.

 

Ye L F, Chen H B, Lin Z L, et al. Research progress in antimicrobial stainless steel
[J]. Hot Working Technology, 2014, 43(20): 10-14.

 


[3]杨柯,任玲,于亚川,等. 医用含铜抗菌金属——从研究走上应用
[J]. 集成技术,2021, 10(3): 69-77.

 

Yang K, Ren L, Yu Y C. et al. Cu-bearing antimicrobial medical metals-from research to application
[J]. Journal of Integrated Technology, 2021, 10(3): 69-77.

 


[4]飞尚才. SUS304奥氏体不锈钢冷轧及退火工艺对组织和性能的影响
[D]. 兰州:兰州理工大学,2011.

 

Fei S C. Effect of Cold Rolling and Annealing Process on the Organization and Properties of SUS304 Austenitic Stainless Steel
[D]. Lanzhou: Lanzhou University of Technology, 2011.

 


[5]申勇峰,李晓旭,薛文颖,等. 304不锈钢拉伸变形过程中的马氏体相变
[J]. 东北大学学报(自然科学版),2012, 33(8): 1125-1128.

 

Shen Y F, Li X X, Xue W Y, et al. Changes in martensitic fraction of 304SS in tensile deformation
[J]. Journal of Northeastern University (Natural Science), 2012, 33(8): 1125-1128.

 


[6]龚娜,武会宾,曹嘉明,等. 冷变形对304奥氏体不锈钢组织和性能的影响
[J]. 热加工工艺,2018, 47(4): 62-66.

 

Gong N, Wu H B, Cao J M, et al. Effect of cold deformation on structure and properties of 304 austenitic stainless steel
[J]. Hot Working Technology, 2018, 47(4): 62-66.

 


[7]周翠兰,刘红梅,白晋钢,等. 冷轧变形量对304不锈钢力学性能的影响
[J]. 钢铁,2012, 47(10): 70-75.

 

Zhou C L, Liu H M, Bai J G, et al. Effect of the cold-rolled reduction on the mechanical properties of 304 austenitic stainless steel sheets
[J]. Steel, 2012, 47(10): 70-75.

 


[8]吴海林,阮志勇,王碧,等. 节镍型奥氏体不锈钢组织性能及控制机理研究
[J]. 轧钢,2022, 39(3): 17-22.

 

Wu H L, Ruan Z Y, W B, et al. Study on microstructure, mechanical properties and control mechanism of low-nickel austenitic stainless steel
[J]. Steel Rolling, 2022, 39(3): 17-22.

 


[9]师雨晴,段国升,宋令慧,等. 循环加载频率对镁合金棘轮应变的影响
[J]. 航空学报,2024, 45(24): 273-286.

 

Shi Y Q, Duan G S, Song L H, et al. Study on the effect of cyclic loading frequency on the strain of magnesium alloy ratchet
[J]. Journal of Aeronautics, 2024, 45(24): 273-286.

 


[10]潘向南. S38C车轴冲击损伤疲劳性能研究
[D]. 成都:西南交通大学,2018.

 

Pan X N. Research on Fatigue Performance of S38C Axle Impact Damage
[D]. Chengdu: Southwest Jiaotong University, 2018.

 


[11]杨卓越,王建,陈嘉砚,等. 304奥氏体不锈钢热诱发马氏体相变研究
[J]. 材料热处理学报,2008, 29(1): 98-101.

 

Yang Z Y, Wang J, Chen J Y, et al. Thermal-induced martensite transformation in 304 austenitic stainless steel
[J]. Transactions of Materials and Heat Treatment, 2008, 29(1): 98-101.

 


[12]杨建国,陈双建,黄楠,等. 304不锈钢形变诱导马氏体相变的影响因素分析
[J]. 焊接学报,2012, 33(12): 89-92,117.

 

Yang J G, Chen S J, Huang N, et al. Factors affecting deformation induced martensitic transformation of SUS304 stainless steel
[J]. Transactions of The China Welding Institution, 2012, 33(12): 89-92,117.

 


[13]王磊,刘梦雅,刘杨,等. 镍基高温合金表面冲击强化机制及应用研究进展
[J]. 金属学报,2023, 59(9): 1173-1189.

 

Wang L, Liu M Y, Liu Y, et al. Research progress on surface impact strengthening mechanisms and application of nickel-based superalloys
[J]. Acta Metallurgica Sinica, 2023, 59(9): 1173-1189.

 


[14]秦小梅. Fe-Mn-Al-C系TWIP钢的塑性变形机制及组织性能研究
[D]. 沈阳:东北大学,2011.

 

Qin X M. Research on Plastic Deformation Mechanism and Organizational Properties of Fe-Mn-Al-C System TWIP Steel
[D]. Shenyang: Northeastern University, 2011.

 


[15]邹章雄,项金钟,许思勇,等. Hall-Petch关系的理论推导及其适用范围讨论
[J]. 物理测试,2012, 30(6): 13-17.

 

Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of the Hall-Petch relationship and discussion of its applicable range
[J]. Physical Examination and Testing, 2012, 30(6): 13-17.

 


[16]司广全,李芳草,田晓,等. 晶粒拉长形态对S30432不锈钢管组织与性能的影响
[J]. 锻压技术,2024, 49(8): 214-223.

 

Si G Q, Li F C, Tian X, et al. Effect of grain elongation morphology on microstructure and properties of S30432 stainless steel tube
[J]. Forging & Stamping Technology, 2024, 49(8): 214-223.

 


[17]Dong H, Li Z C, Somani M C, et al. The significance of phase reversion-induced nanograined/ultrafine-grained (NG/UFG) structure on the strain hardening behavior and deformation mechanism in copper-bearing antimicrobial austenitic stainless steel
[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119: 104489.

 


[18]郑步云,陈鑫,雷剑波,等. 热处理对激光熔化沉积18Ni300马氏体时效钢微观组织和力学性能的影响
[J]. 表面技术,2023, 52(3): 388-398.

 

Zheng B Y, Chen X, Lei J B, et al. Effect of heat treatment on microstructure and mechanical properties of 18Ni300 maraging steel prepared by laser melting deposition
[J]. Surface Technology, 2023, 52(3): 388-398.

 


[19]宋仁伯,项建英,侯东坡,等. 316L不锈钢热加工硬化行为及机制
[J]. 金属学报,2010, 46(1): 57-61.

 

Song R B, Xiang J Y, Hou D P, et al. Behavior and mechanism of hot workhardening for 316L stainless steel
[J]. Acta Metallurgica Sinica, 2010, 46(1): 57-61.

 


[20]程旺军,崔栋栋,孙耀宁,等. 奥氏体不锈钢超低温变形诱导强化机制的研究进展
[J]. 锻压技术,2024, 49(12): 208-216.

 

Cheng W J, Cui D D, Sun Y N, et al. Ultra-low temperature deformation-inducing strengthening mechanism of austenitic stainless steel
[J]. Forging & Stamping Technology, 2024, 49(12): 208-216.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com