Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure and properties of 6082 aluminum alloy mechanical flanges by approximate isothermal forging
Authors: Zhang Zhirong1 Ma Caoyuan2 Li Wenjun1 Chen Ru3 
Unit: 1.Mechatronics Department Linfen Vocational and Technical College Linfen 041000 China 2.Institute of Electrical Engineering China University of Mining and Technology Xuzhou 221008 China 3.Basic Courses Department Tianjin College University of Science and Technology Beijing Tianjin 301830 China 
KeyWords: approximate isothermal forging 6082 aluminum alloy mechanical flange mechanical property wear resistance property microstructure 
ClassificationCode:TH164
year,vol(issue):pagenumber:2025,50(6):27-32
Abstract:

For the homogenized 6082 aluminum alloy billet before forging, the approximate isothermal forging test of 6082 aluminum alloy mechanical flange was conducted, and the microstructure, mechanical properties at room temperature and wear resistance were tested and analyzed. The results indicate that the approximate isothermal forging significantly improves the microstructure of 6082 aluminum alloy, and significantly enhances its mechanical properties and wear resistance. Compared with the billet material before forging, the average grain size of 6082 aluminum alloy mechanical flange forged by approximate isothermal forging decreases by 66 μm, a reduction amplitude of 80%. The precipitation phase of α-Al(FeMn)Si changes from coarse to fine, and the uneven distribution changes to a uniform dispersed distribution. The tensile strength increases by 138 MPa, with a growth amplitude of 66%. The yield strength increases by 142 MPa, with a growth amplitude of 90%. The elongation at break increases by 3.5%, with a growth amplitude of 24%. After 20 minutes of wear, the wear volume decreases by 26×10-3 mm3, a reduction amplitude of 55%.

 
Funds:
2023年临汾市重点研发项目(2335);2024中华职业教育社课题(ZJS2024YB09);2024山西教育科学“十四五”规划课题(GH-240476);山西教学改革与实践项目(202403021);教育部职业院校教指委课题(ZJYB098)
AuthorIntro:
作者简介:张智荣(1983-),女,硕士,副教授,高级工程师,E-mail:niuniu128@126.com
Reference:

[1]王以华.锻模设计技术及实例[M].北京:机械工业出版社, 2009. 


 

Wang Y H. Forging Die Design Technology and Examples[M]. Beijing: China Machine Press, 2009.

 

[2]张永强,郭鸿镇,刘瑞,等. TC18合金β相区等温锻造显微组织和力学性能[J]. 稀有金属材料与工程,2013,42(3):634-638. 

 

Zhang Y Q, Guo H Z, Liu R, et al. Microstructure and mechanical properties of β isothermal forged TC18 alloy [J]. Rare Metal Materials and Engineering, 2013, 42 (3): 634-638.

 

[3]何国云,徐勇,魏科,等. 多道次加载下TC6钛合金作动筒等温锻造成形规律[J]. 锻压技术,2024,49(1):23-31.

 

He G Y, Xu Y, Wei K, et al. Isothermal forging forming laws on TC6 titanium alloy actuator cylinder under multi-pass loading [J]. Forging & Stamping Technology, 2024, 49 (1): 23-31.

 

[4]郭伟,李桐. 等温锻造温度对机械外壳用Mg-8Al-1Zn-0.5Ca镁合金组织与性能的影响[J]. 锻压技术,2024,49(10):15-20.

 

Guo W, Li T. Influence of isothermal forging temperature on microstructure and properties of Mg-8Al-1Zn-0.5Ca magnesium alloy for mechanical shells [J]. Forging & Stamping Technology, 2024, 49 (10): 15-20.

 

[5]王继晨,刘飞,鲍益东,等. 基于无网格法的镁合金等温锻造成形模拟分析[J]. 锻压技术,2023,48(2):10-15. 

 

Wang J C, Liu F, Bao Y D, et al. Simulation analysis on isothermal forging for magnesium alloy based on meshless method [J]. Forging & Stamping Technology, 2023, 48 (2): 10-15.

 

[6]杨雪梅,史晓楠,闫学伟,等. 两相区等温锻造应变速率对Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si合金组织和性能的影响[J]. 热加工工艺,2022,51(13):18-23.

 

Yang X M, Shi X N, Yan X W, et al. Effect of isothermal forging strain rate in two phase region on structure and mechanical properties of Ti-6.5Al-2Sn-4Zr-4Mo-1W-0.2Si alloy [J]. Hot Working Technology, 2022, 51 (13): 18-23.

 

[7]黄通柱,王瑞林,刘卫东,等. 带阻尼台TC6钛合金叶片等温锻造成形工艺优化[J]. 锻造与冲压,2022(1):34-36.

 

Huang T Z, Wang R L, Liu W D, et al. Optimization of isothermal forging process of TC6 Ti-alloy blade with a damper platform [J]. Forging & Metalforming, 2022 (1): 34-36.

 

[8]叶宁,姚彦军. TC2钛合金等温锻造双冠叶片低倍组织亮线的原因分析[J]. 锻造与冲压,2022(19):61-66.

 

Ye N, Yao Y J. Analysis of microstructure bright line on the dual integral blade of TC2 titanium alloy formed by of isothermal forging [J]. Forging & Metalforming, 2022 (19): 61-66.

 

[9]马庆,魏科,徐勇,等. TC6钛合金作动筒等温锻造成形的模拟与实验研究[J]. 热加工工艺,2023,52(7):89-93.

 

Ma Q, Wei K, Xu Y, et al. Simulation and experimental study on isothermal forging of TC6 titanium alloy actuator [J]. Hot Working Technology, 2023, 52 (7): 89-93.

 

[10]袁武,余新平,潘光永. TC11钛合金压气机盘等温锻造过程数值模拟研究[J]. 模具制造,2024,24(10):168-171,174.

 

Yuan W, Yu X P, Pan G Y. Numerical simulation study on isothermal forging process of TC11 titanium alloy compressor dis [J]. Die & Mould Manufacture, 2024, 24 (10): 168-171,174.

 

[11]余永新,肖代红,周鹏飞,等. 等温复合锻造工艺对2A14铝合金轮毂组织与力学性能的影响[J]. 粉末冶金材料科学与工程,2019,24(1):45-51. 

 

Yu Y X, Xiao D H, Zhou P F, et al. Effects of isothermal compound forging on microstructure and mechanical properties of 2A14 aluminum alloy wheel hub [J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24 (1): 45-51.

 

[12]侯琼,陶宇,贾建. 新型粉末高温合金多火次等温锻造过程中晶粒细化机制[J]. 工程科学学报,2019,41(2):209-215. 

 

Hou Q, Tao Y, Jia J. Mechanism of grain refinement of an advanced PM superalloy during multiple isothermal forging [J]. Chinese Journal of Engineering, 2019, 41 (2): 209-215.

 

[13]佟健博,李雪飞,李德,等. TB6钛合金药型罩的等温锻造制备工艺研究[J]. 兵器材料科学与工程,2022,45(6):148-152.

 

Tong J B, Li X F, Li D, et al. Preparation process of TB6 titanium alloy shaped charge liner by isothermal forging [J]. Ordnance Material Science and Engineering, 2022, 45 (6): 148-152.

 

[14]张志雄,章俊涛,韩建超,等. 马氏体组织Ti-6Al-4V钛合金多向等温锻造组织演变及力学性能强化研究[J]. 中国机械工程,2021,32(22):2739-2748. 

 

Zhang Z X, Zhang J T, Han J C, et al. Microstructure and mechanics property variations during MDIF of Ti-6Al-4V alloy with a martensitic microstructure [J]. China Mechanical Engineering, 2021, 32 (22): 2739-2748.

 

[15]潘爱民,祁建中. 等温锻造对机械筋板用AZ80合金性能的影响[J]. 热加工工艺,2020,49(15):96-99. 

 

Pan A M, Qi J Z. Effect of isothermal forging on properties of AZ80 alloy for mechanical rib plate [J]. Hot Working Technology, 2020, 49 (15): 96-99.

 

 

[16]GB/T 3190—2020,变形铝及铝合金化学成分[S]. 

 

GB/T 3190—2020,Chemical composition of wrought aluminium and aluminium alloys[S].

 

 

[17]Gupta A K, Lloyd D J, Court S. Precipitation hardening processes in an Al-0.4%Mg-1.3%Si-0.25%Fe aluminum alloy[J]. Materials Science and Engineering A,2001,301(2):140-146.

 

[18]乔永枫,毛丰,陈冲,等.稀土Eu对铝/钢液-固复合双金属界面组织及力学性能的影响[J].稀有金属,2023,47(9):1316-1323.

 

Qiao Y F, Mao F, Chen C,et al. Interface microstructure and mechanical properties of Al/steel bimetal prepared by liquid-solid casting with rare earth Eu addition[J]. Chinese Journal of Rare Metals,2023,47(9):1316-1323.

 

[19]郭中凯,接金川,李廷举.垂直半连续铸造Cu-15Ni-8Sn合金组织及性能研究[J].铜业工程,2023(6):70-79.

 

Guo Z K, Jie J C, Li T J. Microstructures and properties of Cu-15Ni-8Sn alloy prepared by vertical semi-continuous casting[J]. Copper Engineering, 2023(6): 70-79.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com