[1]Chang Z Q, Liu L W, Li Y, et al. Effect of aging temperature on pitting corrosion of AA6063 aluminum alloy[J]. Metals and Materials International, 2024, 30(6): 1556-1570.
[2]Dubey R, Jayaganthan R, Ruan D, et al. Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review[J]. International Journal of Impact Engineering, 2023, 172: 104397.
[3]Shen W J, Xue F M, Li C Z, et al. Study on constitutive relationship of 6061 aluminum alloy based on Johnson-Cook model[J]. Materials Today Communications, 2023, 37: 106982.
[4]赵国群,孙宇彤,喻俊荃. 铝合金型材挤压弯曲一体化成形技术研究进展[J]. 塑性工程学报,2024, 31(4): 46-55.
Zhao G Q, Sun Y T, Yu J Q. Research progress on extrusion-bending integrated forming technology of aluminum alloy profiles[J]. Journal of Plasticity Engineering, 2024, 31(4): 46-55.
[5]季策,吴晋,李子轩,等. 45/316L复合管三辊斜轧组元金属变形规律研究[J]. 机械工程学报,2024, 60(20): 77-87.
Ji C, Wu J, Li Z X, et al. Study on component metal deformation law of 45/316L cladding tubes in three-roll skew rolling bonding process[J]. Journal of Mechanical Engineering,2024, 60(20): 77-87.
[6]sterreicher J A, Cerny A, Arnoldt A R, et al. A systematic through-process rolling and extrusion study of four experimental high-strength Al-Mg-Si alloys[J]. Results in Engineering, 2024, 23: 102384.
[7]Les'niak D, Zasadziński J, Libura W, et al. Latest advances in extrusion processes of light metals[J]. Archives of Civil and Mechanical Engineering, 2024, 24(3): 184.
[8]Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 903: 163964.
[9]Eleti R R, Bhattacharjee T, Zhao L J, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy[J]. Materials Chemistry and Physics,2018, 210: 176-186.
[10]张志红,刘洁. 304不锈钢的热变形行为及热加工图[J]. 锻压技术,2024, 49(11): 202-209.
Zhang Z H, Liu J. Hot deformation behavior and hot processing map on 304 stainless steel[J]. Forging & Stamping Technology,2024, 49(11): 202-209.
[11]王永红,王经涛,黄同瑊,等.均质态7475铝合金的热变形行为[J]. 锻压技术,2024,49(10): 248-255.
Wang Y H, Wang J T, Huang T J, et al. Thermal deformation behavior of homogeneous 7475 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(10): 248-255.
[12]Liu Q, Li J B, Liu J G, et al. Modeling the flow behavior of wire arc additive manufactured steel over a wide range of strain rates and temperatures[J]. Metallurgical and Materials Transactions B,2024, 55(5): 3679-3697.
[13]Kareem S A, Anaele J U, Olanrewaju O F, et al. Insights into hot deformation of medium entropy alloys: Softening mechanisms, microstructural evolution, and constitutive modelling-A comprehensive review[J]. Journal of Materials Research and Technology,2024, 29: 5369-5401.
[14]Prasad Y V R K, Rao K P, Sasidhar S S. Hot Working Guide: A Compendium of Processing Maps[M]. Ohio, USA:ASM International, 2015.
[15]Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map[J]. Vacuum, 2019, 159: 447-455.
[16]Lin C N, Tzeng Y C, Lee S L, et al. Optimization of hot deformation processing parameters for as-extruded 7005 alloys through the integration of 3D processing maps and FEM numerical simulation[J]. Journal of Alloys and Compounds,2023, 948: 169804.
[17]曾健,董帅,王锋华,等. 基于三维加工图的AZ31与GW83镁合金热加工可成形性对比研究[J]. 塑性工程学报, 2025,32(1): 177-184.
Zeng J, Dong S, Wang F H, et al. Comparative study on hot processing formability of AZ31 and GW83 magnesium alloys based on 3D processing map[J]. Journal of Plasticity Engineering, 2025,32(1): 177-184.
[18]Wu R H, Liu Y, Geng C, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys and Compounds, 2017, 713: 212-221.
[19]Huang Y C, Liu L C, Xiao Z B, et al. Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis[J]. Physics of Metals and Metallography,2019, 120(11): 1115-1125.
[20]卞东伟. 6063铝合金微观组织演变多尺度本构建模研究[D]. 银川:宁夏大学, 2019.
Bian D W. Study on Multi-scale Constructive Modeling of Microstructure Evolution of 6063 Aluminum Alloy[D]. Yinchuan:Ningxia University, 2019.
[21]余珠华, 张大童, 张文, 等. 均匀化处理的6063铝合金的热压缩变形行为及组织演变[J]. 热加工工艺, 2018, 47 (5): 58-61,67.
Yu Z H,Zhang D T,Zhang W,et al. Hot compression deformation behaviors and microstructure evolution of 6063 aluminum alloy treated by homogenization[J]. Hot Working Technology, 2018, 47 (5): 58-61,67.
[22]Li J C, Wu X D, Cao L F, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Materials Characterization,2021, 173: 110976.
[23]Chen Z Q, Xu L J, Cao S Z, et al. Characterization of hot deformation and microstructure evolution of a new metastable β titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1513-1529.
[24]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944, 15(1): 22-32.
[25]洪浩洋,杜向阳,颜志刚. 6063-T5铝合金热变形行为及热加工图研究[J]. 轻工学报, 2021, 36 (4): 86-96,104.
Hong H Y,Du X Y,Yan Z G. Study on hot deformation behavior and hot processing map of 6063-T5 aluminum alloy[J]. Journal of Light Industry, 2021, 36 (4): 86-96,104.
[26]Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.
[27]Prasad Y V R K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance,2003, 12(6): 638-645.
[28]Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development[J]. Materials Characterization,2015, 107:293-301.
|