Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Extrusion process optimization on 6063 aluminum alloy profile based on three-dimensional hot processing map
Authors: Guo Shuangshuang1 2 Huang Zhiheng3 Cheng Shaokun3 Liu Wenwen3 
Unit: 1. Taiyuan Heavy Machinery Group Co. Ltd. Taiyuan 030024 China 2. Taizhong (Tianjin) Binhai Heavy Machinery Co. Ltd. Tianjin 300457 China 3. College of Mechanical Engineering Taiyuan University of Technology Taiyuan 030024 China 
KeyWords: 6063 aluminum alloy extrusion profiles Arrhenius model constitutive equation three-dimensional hot processing map 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2025,50(6):120-128
Abstract:

In order to obtain the optimized extrusion process parameters of 6063 aluminum alloy and realize the uniformity of forming quality and high forming efficiency, at the same time, considering that the temperature in the extrusion process had significant influence on the yield of extruded products, the isothermal hot compression test of 6063 aluminum alloy was carried out on dynamic simulation compression tester Gleeble-3800 with a temperature interval of 30 ℃, and the true stress-true strain curves under the conditions that the temperature of 450-570 ℃ and strain the rate of 1-20 s-1 were obtained. Then, the constitutive equation based on the Arrhenius model was established, the three-dimensional hot processing map was established, and the process optimization was conducted by combining the Prasad theory. The results show that the correlation coefficient r2 between the predicted and test values of the constitutive equation considering strain is 0.97935, and the average absolute relative error AARE is 4.669%. The three-dimensional hot processing map analysis shows that the suitable hot processing conditions for 6063 aluminum alloy are high temperature and low strain rate, and low temperature and high strain rate, and the reasonable extrusion temperature range is 480-530 ℃. The research results show that the established constitutive equation can provide guidance for the evaluation of force and energy parameters in the design stage of extrusion equipment, and the three-dimensional hot processing map can provide reference for the optimization of extrusion process parameters of aluminum alloy profiles.

Funds:
国家重点研发计划(2024YFB3714301);山西省基础研究计划联合资助项目(太重)产业发展类重点项目(TZLH2023-0818006);国家自然科学基金青年科学基金资助项目(52005361);中央引导地方科技发展资金项目(YDZJSX2022A022);中国博士后科学基金特别资助项目(2023T160474)
AuthorIntro:
作者简介:郭爽爽(1984-),男,硕士,高级工程师,E-mail:1115329758@qq.com;通信作者:刘文文(1990-),男,博士,副教授,E-mail:liuwenwen@tyut.edu.cn
Reference:

[1]Chang Z Q, Liu L W, Li Y, et al. Effect of aging temperature on pitting corrosion of AA6063 aluminum alloy[J]. Metals and Materials International, 2024, 30(6): 1556-1570.


 

[2]Dubey R, Jayaganthan R, Ruan D, et al. Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review[J]. International Journal of Impact Engineering, 2023, 172: 104397.

 

[3]Shen W J, Xue F M, Li C Z, et al. Study on constitutive relationship of 6061 aluminum alloy based on Johnson-Cook model[J]. Materials Today Communications, 2023, 37: 106982.

 

[4]赵国群,孙宇彤,喻俊荃. 铝合金型材挤压弯曲一体化成形技术研究进展[J]. 塑性工程学报,2024, 31(4): 46-55.

 

Zhao G Q, Sun Y T, Yu J Q. Research progress on extrusion-bending integrated forming technology of aluminum alloy profiles[J]. Journal of Plasticity Engineering, 2024, 31(4): 46-55.

 

[5]季策,吴晋,李子轩,等. 45/316L复合管三辊斜轧组元金属变形规律研究[J]. 机械工程学报,2024, 60(20): 77-87.

 

Ji C, Wu J, Li Z X, et al. Study on component metal deformation law of 45/316L cladding tubes in three-roll skew rolling bonding process[J]. Journal of Mechanical Engineering,2024, 60(20): 77-87.

 

[6]sterreicher J A, Cerny A, Arnoldt A R, et al. A systematic through-process rolling and extrusion study of four experimental high-strength Al-Mg-Si alloys[J]. Results in Engineering, 2024, 23: 102384.

 

[7]Les'niak D, Zasadziński J, Libura W, et al. Latest advances in extrusion processes of light metals[J]. Archives of Civil and Mechanical Engineering, 2024, 24(3): 184.

 

[8]Savaedi Z, Motallebi R, Mirzadeh H. A review of hot deformation behavior and constitutive models to predict flow stress of high-entropy alloys[J]. Journal of Alloys and Compounds, 2022, 903: 163964.

 

[9]Eleti R R, Bhattacharjee T, Zhao L J, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy[J]. Materials Chemistry and Physics,2018, 210: 176-186.

 

[10]张志红,刘洁. 304不锈钢的热变形行为及热加工图[J]. 锻压技术,2024, 49(11): 202-209.

 

Zhang Z H, Liu J. Hot deformation behavior and hot processing map on 304 stainless steel[J]. Forging & Stamping Technology,2024, 49(11): 202-209.

 

[11]王永红,王经涛,黄同瑊,等.均质态7475铝合金的热变形行为[J]. 锻压技术,2024,49(10): 248-255.

 

Wang Y H, Wang J T, Huang T J, et al. Thermal deformation behavior of homogeneous 7475 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(10): 248-255.

 

[12]Liu Q, Li J B, Liu J G, et al. Modeling the flow behavior of wire arc additive manufactured steel over a wide range of strain rates and temperatures[J]. Metallurgical and Materials Transactions B,2024, 55(5): 3679-3697.

 

[13]Kareem S A, Anaele J U, Olanrewaju O F, et al. Insights into hot deformation of medium entropy alloys: Softening mechanisms, microstructural evolution, and constitutive modelling-A comprehensive review[J]. Journal of Materials Research and Technology,2024, 29: 5369-5401.

 

[14]Prasad Y V R K, Rao K P, Sasidhar S S. Hot Working Guide: A Compendium of Processing Maps[M]. Ohio, USA:ASM International, 2015.

 

[15]Wu Z Q, Tang Y B, Chen W, et al. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map[J]. Vacuum, 2019, 159: 447-455.

 

[16]Lin C N, Tzeng Y C, Lee S L, et al. Optimization of hot deformation processing parameters for as-extruded 7005 alloys through the integration of 3D processing maps and FEM numerical simulation[J]. Journal of Alloys and Compounds,2023, 948: 169804.

 

[17]曾健,董帅,王锋华,等. 基于三维加工图的AZ31与GW83镁合金热加工可成形性对比研究[J]. 塑性工程学报, 2025,32(1): 177-184.

 

Zeng J, Dong S, Wang F H, et al. Comparative study on hot processing formability of AZ31 and GW83 magnesium alloys based on 3D processing map[J]. Journal of Plasticity Engineering, 2025,32(1): 177-184.

 

[18]Wu R H, Liu Y, Geng C, et al. Study on hot deformation behavior and intrinsic workability of 6063 aluminum alloys using 3D processing map[J]. Journal of Alloys and Compounds, 2017, 713: 212-221.

 

[19]Huang Y C, Liu L C, Xiao Z B, et al. Hot deformation behavior of 6063 aluminum alloy studied using processing maps and microstructural analysis[J]. Physics of Metals and Metallography,2019, 120(11): 1115-1125.

 

[20]卞东伟. 6063铝合金微观组织演变多尺度本构建模研究[D]. 银川:宁夏大学, 2019.

 

Bian D W. Study on Multi-scale Constructive Modeling of Microstructure Evolution of 6063 Aluminum Alloy[D]. Yinchuan:Ningxia University, 2019.

 

[21]余珠华, 张大童, 张文, 等. 均匀化处理的6063铝合金的热压缩变形行为及组织演变[J]. 热加工工艺, 2018, 47 (5): 58-61,67.

 

Yu Z H,Zhang D T,Zhang W,et al. Hot compression deformation behaviors and microstructure evolution of 6063 aluminum alloy treated by homogenization[J]. Hot Working Technology, 2018, 47 (5): 58-61,67.

 

[22]Li J C, Wu X D, Cao L F, et al. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy[J]. Materials Characterization,2021, 173: 110976.

 

[23]Chen Z Q, Xu L J, Cao S Z, et al. Characterization of hot deformation and microstructure evolution of a new metastable β titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1513-1529.

 

[24]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944, 15(1): 22-32.

 

[25]洪浩洋,杜向阳,颜志刚. 6063-T5铝合金热变形行为及热加工图研究[J]. 轻工学报, 2021, 36 (4): 86-96,104.

 

Hong H Y,Du X Y,Yan Z G. Study on hot deformation behavior and hot processing map of 6063-T5 aluminum alloy[J]. Journal of Light Industry, 2021, 36 (4): 86-96,104.

 

[26]Prasad Y V R K,Gegel H L,Doraivelu S M,et al.Modeling of dynamic material behavior in hot deformation:Forging of Ti-6242[J].Metallurgical and Materials Transactions A,1984,15(10):1883-1892.

 

[27]Prasad Y V R K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance,2003, 12(6): 638-645.

 

[28]Mohamadizadeh A, Zarei-Hanzaki A, Abedi H R, et al. Hot deformation characterization of duplex low-density steel through 3D processing map development[J]. Materials Characterization,2015, 107:293-301.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com