Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation and experimental research on axial rolling gradient forming process for cylindrical gears
Authors: Ma Ziyong1 2 Hu Qingyuan1 2 Liu Jin3  Zhu Yungao1 Guo Chengang1 
Unit: 1. School of Mechanical Engineering Taiyuan University of Science and Technology Taiyuan 030024 China 2. High-End Equipment and Rail Transit Technology R&D Center of Haian Taiyuan University of Science and Technology    Hai′an 226600  China 3. Xuzhou XCMG New Energy Power Technology Co. Ltd. Xuzhou 221000  China 
KeyWords: cylindrical gears variable tooth thickness rolling wheels axial rolling minimum displacement coefficient tooth number 
ClassificationCode:TG335;TG61+9
year,vol(issue):pagenumber:2025,50(6):129-140
Abstract:

In order to solve the problems of large tooth sliding, difficult material flow and poor stress conditions existing in the traditional rolling wheel during axial rolling forming, firstly, the tooth profile equations of cutting-in section, finishing section and exit section for the variable tooth thickness rolling wheel were derived, and the solution method of the minimum displacement coefficient for the cutting-in section of the variable tooth thickness rolling wheel was determined. Then, the finite element simulation on the axial rolling gradient forming process for cylindrical gears was carried out based on specific examples, and the stress and strain distribution of the workpiece and the material flow law of the forming process were analyzed. Finally, the forming experiments of workpieces with different numbers of teeth were conducted with the help of a self-made cylindrical gears axial rolling gradient forming platform. The results show that the minimum displacement coefficient of the cutting-in section where the workpiece and the small end of the variable tooth thickness rolling wheel do not interfere is -1.32. During the rolling process, the closer the material streamlines are to the workpiece surface, the greater the deformation, and the degree of change for the material streamlines on the left side of each tooth profile is greater than that on the right side. The variable tooth thickness rolling wheel is superior to the traditional rolling wheel in terms of contact uniformity, material flow velocity and stress conditions. In addition, the maximum errors of the average values for the tooth thickness, addendum circle radius and tooth root circle radius of the workpieces with tooth number z′1=42,46 and 50 are +0.010, -0.250 and +0.0413 mm, respectively, showing good agreement with the numerical simulation prediction results, verifying the reliability and practicability of this process.

Funds:
国家自然科学基金资助项目(52205401);山西省应用基础研究计划青年项目(201901D211292);来晋工作优秀博士资助项目(20202036)
AuthorIntro:
作者简介:马自勇(1987-),男,博士,副教授,E-mail:2019017@tyust.edu.cn
Reference:

[1]Politis D J, Lin J, Dean T A, et al. An investigation into the forging of Bi-metal gears[J]. Journal of Materials Processing Technology, 2014,214(11): 2248-2260. 


 

[2]Wang W, Zhao J, Zhai R X. A forming technology of spur gear by warm extrusion and the defects control[J]. Journal of Manufacturing Processes, 2016,21:30-38. 

 

[3]Cho H, Shin Y, Hwang S W, et al. Finite element simulation of PM gear rolling process[J]. Powder Metallurgy, 2015,58(3): 202-208. 

 

[4]Svahn M. A parametric analysis of the surface roughness of teeth shaped by a pinion shaper cutter and guidelines for choosing process parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(21-22): 7368-7377. 

 

[5]Rizescu C, Ciobanu R, Rizescu D. Double flank gear roll inspection of spur gears manufactured using fused deposition modeling[J].IOP Conference Series Materials Science and Engineering, 2019, 514(1): 012031. 

 

[6]Mitome K. Table sliding taper hobbing of conical gear, Part 1: Theoretical analysis of table sliding taper hobbing[J]. J. Eng. Ind., 1981, 103(4): 446-451. 

 

[7]Brecher C, Brumm M, Hübner F, et al. Influence of the manufacturing method on the running behavior of beveloid gears[J]. Production Engineering, 2013, 7(2-3): 265-274. 

 

[8]张磊. 小倾角传动船用齿轮箱啮合特性分析[D]. 重庆:重庆大学,2009.

 

Zhang L. The Gearbox with Down Angle Shaft is Used for the Power Transmission in Speed Boat Sand Yachts[D]. Chongqing: Chongqing University, 2009. 

 

[9]王光建, 褚志刚. 变齿厚斜齿轮少齿差传动变位系数计算研究[J]. 中国机械工程, 2009,20(4):481-484.

 

Wang G J, Chu Z G. Research on the modification coefficient calculation of conical involute planetary gear with few tooth difference[J]. China Mechanical Engineering, 2009,20(4):481-484.

 

[10]Ma Z Y, Luo Y X, Wang Y Q, et al. Geometric design of the rolling tool for gear roll-f

orming process with axial-infeed[J]. Journal of Materials Processing Technology, 2018, 258: 67-79. 

 

[11]闫轲.锥形滚压轮结构设计及其齿轮滚轧成形工艺研究[D].济南:山东大学,2017. 

 

Yan K, Structural Design of Conical Roller and Research of Gear Rolling Process[D]. Jinan: Shandong University,2017.

 

[12]王志奎,赵军.冷搓花键模具的反推设计与成形仿真[J].塑性工程学报,2010,17(1):36-40.

 

Wang Z K, Zhao J. Back-stepping die design and forming simulation for cold-rolling of spline[J]. Journal of Plasticity Engineering, 2010,17(1):36-40.

 

[13]Kretzschmar J, Stockmann M, Ihlemann J, et al. Experimental-numerical investigation of the rolling process of high gears[J]. Experimental Techniques, 2015, 39(3): 28-36. 

 

[14]赵军,黎冬豪,周树华.坯料尺寸对齿轮滚轧成形的影响研究[J].热加工工艺, 2020,49(1):106-110.

 

Zhao J, Li D H, Zhou S H. Study on effects of billet size on gear rolling forming[J]. Hot Working Technology, 2020,49(1):106-110.

 

[15]赵军,黎冬豪,包启臣,等.基于数值模拟的螺旋锥齿轮滚轧成形工艺分析[J].厦门理工学院学报,2019,27(5):60-64.

 

Zhao J, Li D H, Bao Q C, et al. Rolling process analysis of spiral bevel gear based on numerical simulation [J]. Journal of Xiamen University of Technology, 2019,27(5):60-64.

 

[16]孙育竹,户燕会.圆柱直齿轮双辊滚轧成形工艺数值模拟及优化[J].制造业自动化,2018,40(3):114-117.

 

Sun Y Z, Hu Y H. Study on spur-gear rolling and element analysis[J]. Manufacturing Automation, 2018,40(3):114-117.

 

[17]朱小星,朱英,王双双,等.大模数直齿轮热轧成形仿真与实验[J].机械设计与制造,2015(7):67-69.

 

Zhu X X, Zhu Y, Wang S S, et al. Numerical simulation and experiment of hot roll forming large module spur gear[J]. Machinery Design & Manufacture, 2015(7): 67-69.

 

[18]王勇勤,赵兵,罗远新.直齿圆柱齿轮轴向温轧有限元模拟与试验研究[J].重型机械,2019(3):29-33.

 

Wang Y Q, Zhao B, Luo Y X. Finite element simulation and experimental study on spur gear manufactured roll-formed warming process with axial infeed[J]. Heavy Machinery, 2019(3): 29-33. 

 

[19]马自勇,刘瑾,田英虎,等.圆柱齿轮轴向滚轧变齿厚轧轮设计与工艺优化[J].塑性工程学报,2024,31(12):61-75.

 

Ma Z Y, Liu J, Tian Y H, et al. Design and process optimization of beveloid rolling dies in cylindrical gear through-feed rolling process[J]. Journal of Plasticity Engineering, 2024,31(12):61-75.

 

[20]刘志奇.花键轴冷滚压精密成形理论与实验研究[D].兰州:兰州理工大学,2012.

 

Liu Z Q. Theoretical and Experimental Study on the Cold Rolling Precision Forming of Spline Shafts [D]. Lanzhou: Lanzhou University of Technology, 2012.

 

[21]闫超. 微传动件精密体积成形及其机理研究[D]. 深圳:深圳大学, 2020.

 

Yan C. Micro Transmission Parts and Mechanism by Precision Micro Massive Forming[D]. Shenzhen: Shenzhen University, 2020.

 

[22]马自勇, 罗远新, 王勇勤, 等. 齿轮轴向滚轧成形建模与轮齿完整性研究[J]. 机械工程学报,2018,54 (6):133-145.

 

Ma Z Y, Luo Y X, Wang Y Q, et al. Integrity and modeling of gear tooth forming in the roll-forming of gear with axial infeed[J]. Journal of Mechanical Engineering, 2018, 54(6): 133-145.

 

[23]王宇, 马自勇, 罗远新. 带强制分齿的齿轮滚轧成形数值模拟方法研究[J]. 机械设计与制造,2019(S1):9-12.

 

Wang Y, Ma Z Y, Luo Y X. Numerical method study of gear rolling process with workpiece drive system[J]. Machinery Design & Manufacture, 2019(S1):9-12.

 

[24]Ma Z Y, Luo Y X, Wang Y Q. On the pitch error in the initial stage of gear roll-forming with axial-infeed[J]. Journal of Materials Processing Technology, 2018, 252: 659-672. 

 

[25]Boral P, Gobski R, Kralikova R. Technological aspects of manufacturing and control of gears[J]. Materials, 2023, 16(23): 7453

 

[26]闻邦椿. 机械设计手册[M]. 6版.北京: 机械工业出版社, 2018.

 

Wen B C. Mechanical Design Handbook[M]. Sxith Edition. Beijing:China Machine Press,2018.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com