Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Design and optimization analysis on C-type frame for riveting equipment
Authors: Zhu Jianxiong1 2 Ye Xuanlin1 Zhang Haohan1 Liu Jiyuan3 Xu Fan2 Imtiaz Ali Soomro4 Zhao Lun3 
Unit: 1. School of Mechanical and Electrical Engineering Yunnan Open University Kunming 650500 China 2. School of Mechanical Engineering and Automation University of Science and Technology Liaoning Anshan 114011 China 3. Tech X Academy Shenzhen Polytechnic University Shenzhen 518055 China 4. Department of Metallurgy and Materials Engineering Mehran University of Engineering and Technology Jamshoro 76062 Pakistan 
KeyWords: riveting equipment C-type frame shape optimization static analysis modal analysis 
ClassificationCode:TH131.1
year,vol(issue):pagenumber:2025,50(6):144-152
Abstract:

In order to improve the load-bearing capacity and dynamic stability of C-type frame for riveting equipment, its structure was optimized based on the shape optimization theory and finite element method. According to the riveting process requirements, the finite element model of C-type frame was established, and the maximum working load was set to be 70 kN, which was suitable for riveting scenarios where the combined thickness of plates ranged from 1.5 mm to 6.0 mm. Then, through the static analysis, it was found that the stress distribution of the original frame was uniform under the limit load, but the strength of the local area was insufficient, and the maximum deformation displacement reached 1.985 mm. The modal analysis shows that the 1st-order and 2nd-order natural frequencies of model a were 132.26 and 133.57 Hz, respectively, and there was a risk of resonance. Furthermore, aiming at the above problems, a comprehensive optimization strategy with the objectives of improving the stiffness and suppressing the deformation was proposed, which integrated topology optimization and parametrized level set method, reconstructed the material distribution and adjusted the frame geometry state. After the optimization, the safety coefficient of C-type frame was increased to 1.74, the maximum deformation displacement was reduced to 0.605 mm, and the fundamental frequency was increased to 222.12 Hz, which effectively avoided resonance and improved the dynamic response. The results show that the optimized design significantly improves the mechanical properties and stability of the frame under the constraint of lightweight, which provides theoretical support for the efficient design and engineering application of riveting equipment.

Funds:
国家自然科学基金资助项目(12104324);高层次人才科研启动项目(6022310046k);深职大-新栋力超声波焊接技术研发中心项目(602331009PQ);深圳职业技术大学博士后出站后期资助项目(4103-6023271014K1);云南省教育厅科学研究基金项目(2023J2093)
AuthorIntro:
作者简介:朱建雄(1998-),男,硕士研究生 ,E-mail:zhujx102@163.com;通信作者:赵伦(1988-),男,博士,副研究员,E-mail:zhaolun_ultrasonic@126.com
Reference:

[1]Sartisson V, Meschut G. Self-locking self-pierce riveting: A new self-pierce riveting technology for multi-material applications in lightweight car body structures[J]. Welding in the World,2017,61(5):1049-1056.


 

[2]王佳栋.铆接设备C型框架优化设计方法研究[D].上海:上海交通大学,2020.

 

Wang J D. Design Optimization of C-frame of Riveting Equipment[D]. Shanghai:Shanghai Jiao Tong University,2020.

 

[3]崔俊佳,张军,莦茹茹,等.基于深度学习的自冲铆接偏铆缺陷检测算法研究[J].航空制造技术,2023,66(6):22-30.

 

Cui J J,Zhang J,Xiao R R,et al. Research on detection algorithm of partial riveting defects in self-piercing riveting based on deep learning[J]. Aeronautical Manufacturing Technology, 2023, 66(6): 22-30.

 

[4]Xie C,Wang D F, Kong D W, et al. Material-structure-process-performance integrated optimization method of steel/aluminum self-piercing riveted joint[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(3-4): 2045-2059.

 

[5]Ma Y W, Akita R, Abe Y, et al. Mechanical performance evaluation of multi-point clinch-adhesive joints of aluminum alloy A5052-H34 and high-strength steel JSC780[J]. Automotive Innovation,2023,6(3):340-351.

 

[6]邢建国.焊接设备自动化及其对提高生产效率的影响研究[J].中国设备工程,2024(8):109-111.

 

Xing J G. Research on the automation of welding equipment and its impact on improving productivity[J]. China Plant Engineering, 2024(8): 109-111.

 

[7]杨贵秋,邢保英,曾凯,等.钢/铝压印-胶接复合接头腐蚀环境下的静力学性能研究[J].工程设计学报,2024,31(5):663-669.

 

Yang G Q,Xing B Y,Zeng K,et al. Study on statics properties of steel/aluminum clinch-bonded composite joint under corrosive environment[J]. Chinese Journal of Engineering Design, 2024,31(5):663-669.

 

[8]唐臣升,孙朝海,孙进,等.铝合金导管扩口柔性夹持工装技术[J].工具技术,2023,57(10):118-122.

 

Tang C S,Sun C H,Sun J,et al. Process equipment for flexibly hoding in flaring aluminum-alloy pipe[J]. Tool Engineering, 2023, 57(10): 118-122.

 

[9]李阳.预制ULICC板加固既有RC型框架结构抗震性能有限元分析[D].青岛:青岛理工大学,2023.

 

Li Y. Finite Element Analysis on Seismic Performance of Precast Ulicc Plates Retrofitted Existing RC Frame Structure[D]. Qingdao:Qingdao University of Technology, 2023.

 

[10]徐利利,汪彬,施卓奇,等.自冲铆接设备C型架的轻量化设计研究[J].机械工程与自动化,2019(3):66-68.

 

Xu L L,Wang B,Shi Z Q,et al. Research on lightweight design of C-frame of self-piercing riveting equipment[J]. Mechanical Engineering & Automation, 2019(3): 66-68.

 

[11]聂文忠,陈晓东,李欧洋.飞行汽车轻量化板材自冲铆接工艺参数优化[J].兵器材料科学与工程,2019,42(6):75-78.

 

Nie W Z,Chen X D,Li O Y. Parameter optimization of self-piercing riveting process for lightweight sheet metal of flying vehicle[J]. Ordnance Material Science and Engineering, 2019, 42(6): 75-78.

 

[12]徐菲,陆一安,周绪红,等.高强度环槽铆钉ML40Cr材料单轴拉伸及低周疲劳性能研究[J].建筑结构学报,2024(10):217-228.

 

Xu F,Lu Y A,Zhou X H,et al. Uniaxial tensile and low-cycle fatigue performance of high-strength lockbolt ML40Cr materials [J]. Journal of Building Structures, 2024(10): 217-228.

 

[13]张永超,黄志超,陈嘉伟,等.一种固定式多工位大喉深自冲铆接机C型框架装置[P].中国:CN202110725959.1,2021-09-21.

 

Zhang Y C,Huang Z C,Chen J W,et al. A kind of fixed multi-station large throat depth self-punching riveting machine C-type frame device [P]. China: CN202110725959.1, 2021-09-21.

 

[14]李永哲,李晨鹏,周怡君,等.大型金属构件多机协同增材制造前沿进展[J].稀有金属,2023,47(5):664-678.

Li Y Z, Li C P, Zhou Y J,et al. Progresses in multi-robot cooperative additive manufacturing of large-scale metal parts[J]. Chinese Journal of Rare Metals,2023,47(5):664-678.

 

[15]Gromann A, Weis P, Clemen C, et al. Optimization and re-design of a metallic riveting tool for selective laser melting-A case study[J]. Additive Manufacturing, 2019, 31:100892.

 

[16]ECKOLD. MZD 60/6 self-piercing riveting system[Z]. https://www.eckold.de.

 

[17]李丽兰.运用圣维南等效原理简化边界条件的验证及分析[J].红水河,2019,38(1):35-37.

 

Li L L. Verification and analysis of simplified boundary condition by Stint-Venant equivalence principle[J]. Hongshui River, 2019, 38(1): 35-37.

 

[18]Wang M Y, Wang X M, Guo D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246. 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com