Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior for 50Cr5NiMoV backup roller steel
Authors: Lu Yibo1 Li Yugui1 Zhao Guanghui1 Wang Jiayao1 Zou Zhijie1 Song Yaohui2 Guo Qiang1 
Unit: 1. School of Mechanical Engineering Taiyuan University of Science and Technology Taiyuan 030024 China 2. Engineering Research Center of Heavy Machinery Ministry of Education Taiyuan University of Science and Technology Taiyuan 030024 China 
KeyWords: 50Cr5NiMoV backup roller steel hot deformation behavior hot processing map stress triaxiality Arrhenius model 
ClassificationCode:TG142.5
year,vol(issue):pagenumber:2025,50(6):214-220
Abstract:

The hot deformation behavior of 50Cr5NiMoV backup roller steel was systematically investigated by single-pass compression tests at the deformation temperature of 950-1150 ℃, the strain rate of 0.01-1 s-1, and the deformation amount of 50%. The test results show that the rheological stress decreases with the increasing of deformation temperature and increases with the increasing of strain rate. Based on the true stress-strain curves, a strain-compensated Arrhenius model was constructed, and the polynomial relationship between material constants and strain was obtained by fitting. In addition, the dissipation efficiency map and hot processing map were constructed for different strain levels, The results show that the optimal processing zone is 1075-1150 ℃ and 0.01-0.22 s-1. On this basis, the free forging simulations were carried out in the safe zone and the unstable zone of the hot processing map, respectively. The simulation results show that the forged workpiece in the unstable zone mainly exhibits a triaxial tensile stress state, while the forged workpiece in the stable region is mainly subjected to a triaxial compressive stress states. Thus, the research results provide a theoretical basis and test support for the optimization of the hot processing process of 50Cr5NiMoV backup roller steel, which has significant engineering application value.

Funds:
山西省基础研究计划(202303011211004,TZLH20230818001);国家自然科学基金资助项目(52375364);太原科技大学科研启动基金(20242041,20242094);山西省高等教育科技创新计划(2024L211)
AuthorIntro:
作者简介:鲁一波(1999-),男,硕士研究生,E-mail:yibo_lu@163.com;通信作者:李玉贵(1967-),男,博士,教授,E-mail:lygtykd@163.com
Reference:

[1]周会军.支承辊材料Cr5钢的热变形行为及微观组织仿真技术研究[D].洛阳:河南科技大学,2015.


 

Zhou H J. Study on Hot Deformation Behavior of Cr5 Steel and Microstructure Simulation Technology for Heavy Backup Roll Hot Forging Process [D]. Luoyang: Henan University of Science and Technology, 2015.

 

[2]元亚莎.Cr5钢支承辊最终热处理组织和性能的研究 [D].洛阳:河南科技大学,2015.

 

Yuan Y S. Analysis of Ultimate Heat Treatment on Microstructure and Properties of Cr5 Steel Back-up Roll [D]. Luoyang: Henan University of Science and Technology, 2015.

 

[3]陈学文,郭未昀,周旭东.轧辊用Cr5钢静态再结晶行为及元胞自动机模拟 [J]. 材料热处理学报,2018,39(6):124-132.

 

Chen X W, Guo W Y, Zhou X D. Static recrystallization behavior and cellular automaton simulation of Cr5 steel for roller [J]. Transactions of Materials and Heat Treatment, 2018,39(6):124-132.

 

[4]李颖,杜帅,李敏,等. Cr5钢的热加工性能分析 [J].塑性工程学报,2022,29(12):151-161.

 

Li Y, Du S, Li M, et al. Analysis of hot working performance of Cr5 steel [J]. Journal of Plasticity Engineering, 2022,29(12):151-161.

 

[5]郭未昀,周旭东,陈学文.大型冷轧辊Cr5钢的静态再结晶行为及其动力学模型 [J].金属热处理,2018,43(7):33-39.

 

Guo W Y, Zhou X D, Chen X W. Static recrystallization behavior and dynamic model of Cr5 steel for large cold roll [J]. Heat Treatment of Metals, 2018,43(7):33-39.

 

[6]Di Y N, Fu B, Ma D S, et al. Hot deformation characteristics and dynamic recrystallization behavior of Cr5 die casting mold steel [J]. Journal of Materials Research and Technology, 2024,30:3547-3557.

 

[7]Cao R Z, Wang W, Ma S B, et al. Arrhenius constitutive model and dynamic recrystallization behavior of 18CrNiMo7-6 steel[J]. Journal of Materials Research and Technology, 2023,24:6334-6347.

 

[8]陈由红,兰博,李金栋,等.挤压态GH710合金本构模型研究及应用验证[J].稀有金属,2023,47(7):986-994.

 

Chen Y H,Lan B,Li J D,et al. Material characterization and validation for constitutive model of as-extruded GH710 alloy[J]. Chinese Journal of Rare Metals, 2023,47(7):986-994.

 

[9]Han L Y, Zhu X J, Wei D J, et al. Construction of an Arrhenius constitutive model for Mg-Y-Nd-Zr-Gd rare earth magnesium alloy based on the Zener-Hollomon parameter and objective evaluation of its accuracy in the twinning-rich intervals [J]. Journal of Magnesium and Alloys, 2024,12 (7):2890-2908.

 

[10]Zhang H B, Zhang Y K, Huang Y L, et al. The thermal deformation behavior and processing map of TC9 titanium alloy [J]. Journal of Materials Research and Technology, 2024,33:6576-6590.

 

[11]Chen Y J, Li Q A, Chen X Y, et al. Construction of hot processing map, dynamic recrystallization critical conditions and kinetic model of AZ61 alloy [J]. Materials Today Communications, 2024,40:109540.

 

[12]An D, Qian B Y, Wu R Z, et al. Influence of power dissipation value and deformation activation energy on recrystallization in compression deformation behavior of Mg-Li-Zn-Y alloy [J]. Journal of Rare Earths, 2024,42 (12):2341-2349.

 

[13]Xin J J, Zhang L Q, Ge G W, et al. Characterization of microstructure evolution in β-γ TiAl alloy containing high content of Niobium using constitutive equation and power dissipation map [J]. Materials & Design, 2016,107:406-415.

 

[14]丰园海,郑双昱,罗翔,等.Fe-28Mn-10Al-0.8C的热压缩行为及微观组织结构转变[J].铜业工程,2023(2):50-60.

 

Feng Y H,Zheng S Y,Luo X,et al. Hot deformation behavior and microstructure evolution of Fe-28Mn-10Al-0.8C low density steel [J].Copper Engineering,2023(2):50-60.

 

[15]Li C M, Huang L, Zhao M J, et al. Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures [J]. Journal of Alloys and Compounds, 2022,924:166481.

 

[16]Chen L, Zhang B, Yang Y, et al. Evolution of hot processing map and microstructure of as-forged nickel-based superalloy during hot deformation [J]. Journal of Materials Research and Technology, 2023,24:7638-7653.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com