[1]张慧萍,王崇勋,杜煦. 飞机起落架用300M超高强钢发展及研究现状[J]. 哈尔滨理工大学学报,2011,16(6):73-76.
Zhang H P, Wang C X, Du X. Aircraft landing gear with the development of 300M ultra high strength steel and research [J]. Journal of Harbin University of Science and Technology, 2011, 16 (6): 73-76.
[2]张海成,肖细军,曾德涛. 飞机起落架用300M超高强度钢的表面脱碳行为研究[J]. 热加工工艺,2024,53(12):120-124,128.
Zhang H C, Xiao X J, Zeng D T. Research on surface decarburization behavior of 300M ultra high strength steel for aircraft landing gear [J]. Hot Working Technology, 2024, 53 (12): 120-124,128.
[3]赵明杰,黄亮,李建军,等. 300M钢热扭转变形条件下的变形行为研究[J]. 塑性工程学报,2020,27(11):159-166.
Zhao M J, Huang L, Li J J, et al. Deformation behaviors of 300M steel under hot torsion [J]. Journal of Plasticity Engineering, 2020, 27 (11): 159-166.
[4]刘凯. 300M钢的热态变形特性及其动态再结晶模型研究[D]. 南昌:南昌航空大学,2012.
Liu K. Investigation on Hot Deformation Feature and Dynamic Recrystallization Models of 300M Steel [D]. Nanchang: Nanchang University of Aeronautics and Astronautics, 2012.
[5]袁培柏. 300M钢制飞机起落架零件的真空淬火[J]. 金属热处理,1991,16(10):29-33.
Yuan P B. Vacuum quenching of 300M steel aircraft landing gear parts [J]. Heat Treatment of Metals, 1991,16(10): 29-33.
[6]石旭. 300M超高强钢高温本构模型的研究[D]. 哈尔滨:哈尔滨理工大学,2015.
Shi X. Research on the High Temperature Constitutive Model of 300M Ultra-high Strength Steel [D]. Harbin: Harbin University of Science and Technology, 2015.
[7]章晓婷,黄亮,李建军,等. 300M高强钢高温流变行为及本构方程[J]. 中南大学学报(自然科学版),2017,48(6):1439-1447.
Zhang X T, Huang L, Li J J, et al. Flow behaviors and constitutive model of 300M high strength steel at elevated temperature [J]. Journal of Central South University (Science and Technology), 2017, 48 (6): 1439-1447.
[8]刘宁,旷五洲,陈俊.含钒高锰LNG储罐用钢热变形行为及组织演变研究[J].轧钢,2023,40(5):25-31,46.
Liu N, Kuang W Z, Chen J. Study on hot deformation behaviors and microstructure evolution of V-bearing high Mn steel for LNG tank [J]. Steel Rolling, 2023, 40 (5): 25-31,46.
[9]霍巍丰,宋仁伯,张宇,等.Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb中锰钢的热变形行为研究[J].轧钢,2023,40(1):17-22.
Huo W F, Song R B, Zhang Y, et al. Research on hot deformation behavior of Fe-4Mn-1.5Al-0.5Si-0.2C-0.05Nb medium Mn steel [J]. Steel Rolling, 2023, 40 (1): 17-22.
[10]曹建国,王天聪,李洪波,等. 基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4):90-96,102.
Cao J G, Wang T C, Li H B, et al. High-temperature constitutive relationship of non-oriented electrical steel based on modified Arrhenius model [J]. Journal of Mechanical Engineering, 2016, 52 (4): 90-96,102.
[11]李清阳,蔡军,樊昱,等. GH3625高温合金热变形行为及修正非线性本构模型[J].塑性工程学报,2025,32(2):172-178.
Li Q Y, Cai J, Fan Y, et al. Thermal deformation behavior and modified nonlinear constitutive model of GH3625 superalloy [J]. Journal of Plasticity Engineering, 2025, 32 (2): 172-178.
[12]毛欢,韩莹莹. 基于应变补偿Arrhenius模型的TC20钛合金本构方程研究[J].铸造技术,2018,39(9):1939-1942,1947.
Mao H, Han Y Y. Study on constitutive equations of TC20 alloy based on strain-compensated Arrhenius model [J]. Foundry Technology, 2018, 39 (9): 1939-1942,1947.
[13]杨合,孙志超,林艳,等. 管成形技术发展基础问题研究[J]. 塑性工程学报,2001,8(2):83-85.
Yang H, Sun Z C, Lin Y, et al. Advanced plastic processing technology and research progress on tube forming [J]. Journal of Plasticity Engineering, 2001, 8 (2): 83-85.
[14]刘凯,鲁世强,欧阳德来,等. 300M钢动态再结晶动力学[J]. 塑性工程学报,2012,19(3):82-87,113.
Liu K, Lu S Q, Ouyang D L, et al. Investigation on dynamic recrystallization kinetics of 300M steel [J]. Journal of Plasticity Engineering, 2012, 19 (3): 82-87,113.
[15]丁文圆,宋庆华,赵飞,等. CLAM钢的热变形行为及热加工图[J]. 原子能科学技术,2018,52(6):1077-1084.
Ding W Y, Song Q H, Zhao F, et al. Hot deformation behavior and processing map of CLAM steel [J]. Atomic Energy Science and Technology, 2018, 52 (6): 1077-1084.
[16]黄顺喆,厉勇,王春旭,等. 300M钢的热变形行为研究[J]. 热加工工艺,2010,39(20):25-28.
Huang S Z, Li Y, Wang C X, et al. Investigation on hot deformation behavior of 300M steel [J]. Hot Working Technology, 2010, 39 (20): 25-28.
[17]刘修苹,杨素媛,李先雨,等. M54超强钢的热变形行为及显微组织研究[J]. 兵器材料科学与工程,2023,46(2):1-6.
Liu X P, Yang S Y, Li X Y, et al. Hot deformation behavior and microstructure of M54 ultra-strength steel [J]. Ordnance Material Science and Engineering, 2023, 46 (2): 1-6.
[18]马少伟,张艳,杨明,等. Zener-Hollomon参数对Cr4Mo4Ni4V高合金钢热变形行为的影响[J]. 中南大学学报(自然科学版),2021,52(2):376-388.
Ma S W, Zhang Y, Yang M, et al. Effect of Zener-Hollomon parameters on hot deformation behavior of Cr4Mo4Ni4V high alloy steel [J]. Journal of Central South University (Science and Technology), 2021, 52 (2): 376-388.
[19]孙佳伟,陈学文,苏志毅,等. SA-765 Gr.Ⅱ钢的热变形行为及再结晶临界应变模型[J]. 材料热处理学报,2024,45(5):152-160.
Sun J W, Chen X W, Su Z Y, et al. Hot deformation behavior and recrystallization critical strain model of SA-765 Gr.Ⅱ steel[J]. Transactions of Materials and Heat Treatment, 2024, 45 (5): 152-160.
[20]Najafizadeh A,Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ International,2006,46(11):1679-1684.
[21]呙程祥,王家昌,张明磊,等. H13模具钢的热变形行为及本构模型建立[J]. 锻压技术,2024,49(10):221-229.
Guo C X, Wang J C, Zhang M L, et al. Hot deformation behavior and establishment of constitutive model for H13 die steel [J]. Forging & Stamping Technology, 2024, 49 (10): 221-229.
[22]Wei G B, Peng X D, Hu F P, et al. Deformation behavior and constitutive model for dual-phase Mg-Li alloy at elevated temperatures [J]. Transactions of Nonferrous Metals Society of China, 2016, 26 (2): 508-518.
[23]金皓,李全,金朝阳. 基于Johnson-Cook模型的AZ80镁合金热变形行为[J].塑性工程学报,2021,28(11):150-157.
Jin H, Li Q, Jin C Y. Thermal deformation behavior of AZ80 magnesium alloy based on Johnson-Cook model [J]. Journal of Plasticity Engineering, 2021, 28 (11): 150-157.
[24]田畅. 中锰钢的奥氏体调控与Cu析出行为研究[D].北京:北京科技大学,2022.
Tian C. Study on Austenite Adjustment and Cu Precipitation in Medium Mn Steels [D]. Beijing:University of Science and Technology Beijing, 2022.
[25]杨劼,任慧平,王海燕,等. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报,2024,38(9):212-219.
Yang J, Ren H P, Wang H Y, et al. Selection of isothermal quenching variants and quantitative characterization of special crystal faces of low carbon bainite steels [J]. Materials Reports, 2024, 38 (9): 212-219.
[26]Cayron C. One-step model of the face-centred-cubic to body-centred-cubic martensitic transformation [J]. Acta Crystallographica Section A: Foundations and Advances, 2013, 69(5): 498-509.
[27]高野,任家宽,李志峰,等. 奥氏体化温度对900 MPa级HSLA钢显微组织和晶体学演变的影响[J]. 材料研究学报,2022,36(1):21-28.
Gao Y, Ren J K, Li Z F, et al. Effect of austenitizing temperature on microstructure and crystallographic evolution of 900 MPa grade HSLA steel [J]. Chinese Journal of Materials Research, 2022, 36 (1): 21-28.
|