Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High-temperature constitutive equation and hot processing map for Al-Zn-Mg-Cu aluminum alloy
Authors: Xu Jinhao Long Ya 
Unit: School of Rail Transit Zhejiang Institute of Communications Hangzhou 311112 China 
KeyWords: Al-Zn-Mg-Cu aluminum alloy isothermal hot compression constitutive equation hot processing map microstructure 
ClassificationCode:TG146.2;TG316
year,vol(issue):pagenumber:2025,50(6):259-267
Abstract:

To investigate the high-temperature constitutive relationship and hot processing window of Al-Zn-Mg-Cu aluminum alloy, firstly, the isothermal hot compression test of Al-Zn-Mg-Cu aluminum alloy was conducted by thermal simulation machine Gleeble-3500, and its high-temperature rheological properties under the deformation temperature of 623-773 K and the strain rates of 0.001-1 s-1 were studied. Secondly, a new high-precision constitutive equation of the alloy was established by high-order gradient information, and the calculation model of the hot processing map was derived based on this equation. Finally, the rationality of the hot processing map was verified by metallographic tests in typical regions. The hot compression curves indicate that under low strain rate conditions, the stress of the aluminum alloy first rises rapidly and then slowly decreases and finally stabilizes with the increasing of strain. Under high strain rate conditions, the stress first rises rapidly and then drops sharply, followed by a slow increase, and finally slowly decreases to stability. Partial derivative analysis reveals that the second-order approximation between lnσ and lnε· and the first-order approximation between lnσ and T can construct a constitutive equation with high accurate and few parameters. Hot processing map and metallographic analysis demonstrate that the stable hot processing window is the strain rate of 0.001-0.035 s-1 and the deformation temperature of 623-773 K.

Funds:
浙江省教育厅一般科研项目(Y202352134)
AuthorIntro:
作者简介:徐槿昊(1989-),女,硕士,讲师,E-mail:olivia8907@163.com
Reference:

[1]陈天宇,章宇豪,王芝秀,等. Zn含量对Al-Mg-Si-Cu合金拉伸性能及晶间腐蚀敏感性的影响[J].稀有金属,2023,47(4):484-492.


 

Chen T Y,Zhang Y H,Wang Z X,et al. Tensile properties and intergranular corrosion sensitivity of Al-Mg-Si-Cu alloy with different Zn contents[J]. Chinese Journal of Rare Metals,2023,47(4):484-492.

 

[2]李棠旭, 李婷, 刘越鹏, 等. 7X75系列铝合金的发展与展望[J]. 轻合金加工技术, 2023,51(10):1-7.

 

Li T X, Li T, Liu Y P, et al. Review on research progress of 7X75 series aluminum alloys[J]. Light Alloy Fabrication Technology, 2023,51(10):1-7.

 

[3]师晓宁, 刘一笑. 热处理工艺对挤压7175铝合金组织性能的影响[J]. 锻压技术, 2024, 49(2):234-240.

 

Shi X N, Liu Y X. Influence of heat treatment process on microstructure and properties extruded 7175 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):234-240.

 

[4]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3):302-312.

 

Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China[J]. Heat Treatment of Metals, 2024, 49(3):302-312.

 

[5]袁松阳. 7075铝合金常规挤压铸造与流变挤压铸造微观组织和力学性能研究[D]. 上海:上海交通大学, 2019.

 

Yuan S Y. Study on Microstructure and Mechanical Properties of Conventional Squeeze Casting and Rheo-squeeze Casting 7075 Aluminum Alloy[D]. Shanghai:Shanghai Jiao Tong University, 2019.

 

[6]张王军, 李云, 吴玉娜, 等.超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3):52-60,84.

 

Zhang W J, Li Y, Wu Y N, et al. A critical review of the state-of-the-art of ultra-high strength 7XXX aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3):52-60,84.

 

[7]金明, 张晋源. 7050铝合金流变模型及稳态热加工工艺研究[J]. 锻压技术, 2024, 49(2):255-264.

 

Jin M, Zhang J Y. Study on rheological model and steady hot working process of 7050 aluminum alloy[J]. Forging & Stamping Technology, 2024, 49(2):255-264.

 

[8]杨成曦, 王姝俨, 吴道祥. 锻态7050铝合金修正JC本构模型建立与模拟应用[J]. 铝加工, 2022(4):47-51.

 

Yang C X, Wang S Y, Wu D X. Construction and simulation application of modified Johnson-Cook constitutive model for forged 7050 aluminum alloy[J]. Aluminium Fabrication, 2022(4):47-51.

 

[9]郑许, 彭斐, 朱玉涛, 等. 一种Al-Zn-Mg-Cu铝合金的热压缩变形行为及微观组织演变[J]. 轻金属, 2022(2):40-46.

 

Zheng X, Peng F, Zhu Y T, et al. Hot compression deformation behavior and microstructure evolution of an Al-Zn-Mg-Cu aluminum alloy[J]. Light Metals, 2022(2):40-46.

 

[10]王永红, 陈彦龙, 朱鑫, 等. 7175铝合金热变形行为与热加工图[J]. 塑性工程学报, 2024, 31(1):216-222.

 

Wang Y H, Chen Y L, Zhu X, et al. Hot deformation behaviors and hot processing maps of 7175 aluminum alloy[J]. Journal of Plasticity Engineering, 2024, 31(1):216-222.

 

[11]彭宇, 杨程, 彭迎娇, 等. 7075-T6高强铝合金温热变形本构方程及热加工图[J]. 锻压技术, 2023, 48(9):230-238.

 

Peng Y, Yang C, Peng Y J, et al. Warm deformation constitutive equation and thermal processing map of 7075-T6 high strength aluminum alloy[J]. Forging & Stamping Technology, 2023, 48(9):230-238.

 

[12]Richardson G J, Sellars C M, Tegart W J M. Recrystallization during creep of nickel [J]. Acta Metallurgica, 1966, 14(10):1225-1236.

 

[13]Wang J,Xiao G Q, Zhang J S. A new constitutive model and hot processing map of 5A06 aluminum alloy based on high-temperature rheological behavior and higher-order gradients[J]. Materials Today Communications, 2023, 36:106502.

 

[14]Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10):1883-1892.

 

[15]Narayana Murty S V S, Nageswara Rao B, Kashyap B P. Identification of flow instabilities in the processing maps of AISI 304 stainless steel [J]. Journal of Materials Processing Technology, 2005, 166(2): 268-278.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com