Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Efficient storage method on industrial real-time time-series massive measurement point data
Authors: Tang Yuxi1 Yuan Chao2 3 Chu Zhengquan2 Zhai Jiangbo1 Zhang Hao2 Zhang Xiaopeng1 Liu Haosong2 Shi Yiqing2 
Unit: 1. Shaanxi Hong Yuan Aviation Forging Company Ltd. Xianyang 713800 China 2. China Academy of Machinery Beijing Research Institute of Mechanical & Electrical Technology Co. Ltd. Beijing 100083 China 3. School of Mechanical Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China 
KeyWords: time-series data data storage optimization high-frequency data processing industrial big data forging industry 
ClassificationCode:TP316
year,vol(issue):pagenumber:2025,50(6):268-276
Abstract:

For the problems of low storage efficiency, insufficient writing and query performance of relational databases and time-series databases when processing high-frequency time-series data in the forging industry, an efficient industrial real-time time-series massive measurement point data storage method was proposed. The method innovatively used JSON format for single-column full-storage strategy, effectively circumventing the column number limitations of traditional databases and reducing the storage space occupancy. By using the underlying JSON operator logic of the database for data query and retrieval, the query efficiency of time-series data was improved, especially showing significant advantages in large-scale data scenarios. Experimental results demonstrate that compared with the traditional methods, this method improves the writing efficiency by 5.6 times and saves 170 times of storage space consumption under large data volumes, and has a performance advantage of 3-5 times in data query speed.  

 
Funds:
国家重点研发计划资助项目(2022YFB3706904)
AuthorIntro:
作者简介:汤育玺(1982-),男,硕士,高级工程师,E-mail:tyxsl@sohu.com;通信作者:袁超(1992-),男,博士,高级工程师,E-mail:804785930@qq.com
Reference:

[1]周济.智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,26(17):2273-2284.


 

Zhou J. Intelligent manufacturing—Main direction of “Made in China 2025” [J]. China Mechanical Engineering,2015,26(17):2273-2284.

 

[2]袁超,张浩,凌云汉,等.基于小波变换和S-G滤波的多尺度平滑预处理方法[J].锻压技术,2023,48(6):140-155.

 

Yuan C, Zhang H, Ling Y H, et al. Multiscale smoothing preprocessing method based on wavelet transform and S-G filtering[J]. Forging & Stamping Technology, 2023, 48(6):140-155.

 

[3]丁小欧,于晟健,王沐贤,等.基于相关性分析的工业时序数据异常检测[J].软件学报,2020,31(3):726-747.

 

Ding X O, Yu S J, Wang M X, et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Sofrware,2020,31(3):726-747.

 

[4]李潇睿,班晓娟,袁兆麟,等.工业场景下基于深度学习的时序预测方法及应用[J].工程科学学报,2022,44(4):757-766.

 

Li X R,Ban X J,Yuan Z L, et al. Review on deep learning models for time series forecasting in industry[J]. Chinese Journal of Engineering,2022,44(4):757-766.

 

[5]刘帅,乔颖,罗雄飞,等.时序数据库关键技术综述[J].计算机研究与发展,2024,61(3):614-638.

 

Liu S, Qiao Y, Luo X F,et al. Key techniques of time series databases: A survey[J]. Journal of Computer Research and Development,2024,61(3):614-638.

 

[6]郑孟蕾,田凌.基于时序数据库的产品数字孪生模型海量动态数据建模方法[J].清华大学学报(自然科学版), 2021,61(11): 1281-1288. 

 

Zheng M L, Tian L. Digital product twin modeling of massive dynamic data based on a time-series database[J]. Journal of Tsinghua University(Science and Technology),2021,61(11):1281-1288. 

 

[7]陈通,韩雪君,马延路.时序数据库在海量地震波形数据分布式存储与处理中的应用初探[J].中国地震,2022,38(4):799-809.

 

Chen T, Han X J, Ma Y L. Preliminary application of time series database in distributed storage and processing of massive seismic waveform data[J]. Earthquake Research in China,2022,38(4):799-809.

 

[8]张伟雄,唐娉,张正.基于时序自注意力机制的遥感数据时间序列分类[J].遥感学报,2023,27(8):1914-1924.

 

Zhang W X,Tang P, Zhang Z. Time series classification of remote sensing data based on temporal self-attention mechanism[J]. National Remote Sensing Bulletin,2023,27(8):1914-1924.

 

[9]谢伟,卢士达,时宽治,等.面向工业物联网时序数据的异常检测方法[J].计算机工程与应用,2024,60(12):270-282.

 

Xie W, Lu S D, Shi K Z, et al. Anomaly detection method for industrial IoT timing data[J]. Computer Engineering and Applications, 2024,60(12):270-282.

 

[10]Ahmed I. PostgreSQL数据库的特点[J].软件和信息服务, 2021(6):63.

 

Ahmed I. Features of PostgreSQL database[J].Software and Integrated Circuit,2021(6):63.

 

[11]王林彬,黎建辉,沈志宏.基于NoSQL的RDF数据存储与查询技术综述[J].计算机应用研究,2015,32(5):1281-1286.

 

Wang L B, Li J H, Shen Z H. Overview of NoSQL databases for large scaled RDF data management[J]. Application Research of Computers,2015,32(5):1281-1286.

 

[12]刘晓光.基于MySQL的分布式SQL数据库的设计与实现[D].北京:中国科学院大学,2016.

 

Liu X G. Design and Implementation of a Distributed Database Based on MySQL Database[D].Beijing:University of Chinese Academy of Sciences,2016.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com