Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Extrusion simulation and performance study on profiles for aluminum alloy energy-absorbing beams
Authors: Song Xichao1  Liu Shoukui2 3  Zhao Zhonghua2 3  Pan Xueyong4  Sun Xuemei4 5  Chen Liang4 6 
Unit: 1.Linyi Industrial and Information Technology Development Promotion Center 2.Shandong Haomen Aluminum Industry Co. Ltd. 3.Shandong Province Key Laboratory of High Strength and Tough Aluminum Alloy Profile and Technology 4.School of Mechanical & Vehicle Engineering Linyi University 5.Shandong Ouyahao New Energy Technology Co. Ltd. 6.National Key Laboratory of High-end Equipment and Advanced Technology for Metal Forming Shandong University 
KeyWords: aluminum alloy profile  extrusion process parameters  aging process  meterial flow uniformity  extrusion force 
ClassificationCode:TG146.21
year,vol(issue):pagenumber:2025,50(7):96-105
Abstract:

 For energy-absorbing beam profiles, its extrusion forming process was systematically analyzed and discussed by the combination of numerical simulation and experimental verification. Then, based on the Box-Behnken experimental design method, the extrusion process parameters were optimized, and the experimental verification and performance analysis were conducted on the optimization results. The results show that the extrusion speed has a decisive influence on the material flow uniformity and extrusion force during the forming process of thin-walled aluminum alloy profiles. The optimal process condition is the billet temperature of 487.16 ℃, the die temperature of 525 ℃, the extrusion barrel temperature of 417.35 ℃, and the extrusion speed of 0.5 mm·s-1. Based on the above process parameters, the extrusion experiments are conducted, the surface roughness of the obtained profile is good and no obvious defects are obtained. The performance analysis shows that the performance of profile under the aging process of 150 ℃×12 h is the best,which  meets the actual production requirements.

Funds:
山东省技术创新引导计划 (中央引导地方科技发展资金)(YDZX2024108ZKT);山东省科技型中小企业创新能力提升工程项目(2023TSGC0459ZKT)
AuthorIntro:
作者简介:宋夕超(1986-),男,硕士,高级工程师 E-mail:563003689@qq.com 通信作者:孙雪梅(1984-),女,博士,教授 E-mail:sunxuemei@lyu.edu.cn
Reference:

 [1]Basem A, Alghassab A M, Asadi A A H, et al. Evaluation of microstructure and mechanical characteristics of 2024 aluminum alloys with μAl2O3 additives produced via hydrostatic cyclic expansion extrusion with backpressure[J]. Results in Engineering, 2024, 23: 102403.


 


[2]Cai Y H, Jiang G D, Dong J L, et al. Microstructure evolution and comprehensive properties of the extruded AA6008 crashbox profiles aged at 210 -220 [J]. Journal of Materials Research and Technology, 2024, 28: 3376-3384.


 


[3]肖旭, 戚聿东. 中国新能源汽车产业基础再造的思路与路径研究[J]. 北京师范大学学报(社会科学版), 2024 (3): 148-156.


 


Xiao X, Qi Y D. On the ideas and paths of the industrial foundation reconstruction of Chinas new energy automobile [J]. Journal of Beijing Normal University(Social Sciences), 2024 (3): 148-156.


 


[4]欧阳明高. 中国新能源汽车未来10年周期性和结构性趋势展望[J]. 科技导报, 2024, 42(12): 6-13.


 


Ouyang M G. Prospects for the cyclical and structural trends of Chinas new energy vehicles in the next ten years [J]. Science and Technology Report, 2024, 42(12): 6-13.


 


[5]王传福. 新能源汽车将形成中国市场的主导地位[J]. 高科技与产业化, 2024, 30(3): 18-19.


 


Wang C F. New energy vehicles will form a dominant position in the Chinese market [J]. High-Technology & Commercialization, 2024, 30 (3): 18-19.


 


[6]Yi J, Wang Z H, Liu Z W, et al. FE analysis of extrusion defect and optimization of metal flow in porthole die for complex hollow aluminium profile[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(10): 2094-2101.


 


[7]Moon Banerjee, Tikendra Nath Verma, Prerana Nashine. Experimental and numerical analysis of extrusion process for AA 7178 alloy with varying process parameters[J]. Materials Today: Proceedings, 2018, 5(2): 6839-6847.


 


[8]Yu J Q, Zhao G Q, Zhang C S, et al. Dynamic evolution of grain structure and microtexture along a welding path of aluminum alloy profiles extruded by porthole dies[J]. Materials Science & Engineering A, 2017, 682: 679-690.


 


[9]Lyu J X, Shi Z S, Yu J Q, et al. Analysis of solidstate welding in extruding wide aluminium hollow profiles using a new threecontainer extrusion system[J]. Journal of Manufacturing Processes, 2023, 94: 146-158.


 


[10]Liu Y D, Wang X L, Xu J, et al. Formation mechanism and optimization strategy of surface backend defects in miniature complex hollow extruded profile[J]. Journal of Materials Processing Technology, 2022, 308: 117726.


 


[11]孙雪梅. 复杂铝合金型材挤压过程数值建模与模具优化设计方法研究[D]. 济南:山东大学, 2014.


 


Sun X M. Study on Numerical Modeling for Extrusion Process of Aluminum Profiles with Complex Crosssection and Optimization Die Design [D]. Jinan: Shandong University, 2014.


 


[12]张海超. 大型复杂铝合金型材挤压过程数值模拟与模具优化及热处理工艺研究[D]. 济南:山东大学, 2021.


 


Zhang H C. Study on Numerical Simulation of Extrusion Process, Die Optimization and Heat Treatment of Large Complex Aluminum Alloy Profile [D]. Jinan: Shandong University, 2021.


 


[13]孙雪梅, 赵国群. 悬臂铝合金型材伪分流挤压模具结构设计及其强度分析[J]. 机械工程学报, 2013, 49(24): 39-44.


 


Sun X M, Zhao G Q. Fake porthole extrusion die structure design and strength analysis for cantilever aluminum alloy profiles [J]. Journal of Mechanical Engineering,2013, 49(24): 39-44.


 


[14]曾文浩. 带长悬臂结构空心截面铝型材挤压过程数值模拟及模具/工艺优化[D]. 成都:西华大学, 2017.


 


Zeng W H. Numerical Simulation of Extrusion Process for Hollow Section Aluminium Profile with Long Cantilever and Its Die & Technics Optimization [D]. Chengdu: Xihua University, 2017.


 


 


[15]徐海洁, 仝飞, 马峥,. 复杂截面铝合金型材挤压成形工艺与流动行为研究[J/OL]. 热加工工艺, 2025(15):72-77+84[2025-03-10].https://doi.org/10.14158/j.cnki.1001-3814.20241450.


 


Xu H J, Tong F, Ma Z, et al. Study on extrusion forming process and flow behavior of aluminum alloy profile with complex crosssection [J/OL]. Hot Working Technology, 2025(15):72-77+84[2025-03-10].https://doi.org/10.14158/j.cnki.1001-3814.20241450.


 


[16]GB/T 168652023, 变形铝、镁及其合金加工制品拉伸试验用试样及方法[S].


 


GB/T 168652023, Test pieces and methods for tensile test for wrought aluminium, magnesium and their alloy products[S].


 


[17]VDA 238-100, Pl-ttchen-Biegeversuch für metallische Werkstoffe[S].


 


[18]GB/T 68922023, 一般工业用铝及铝合金挤压型材[S].


 


GB/T 68922023, Wrought aluminium and aluminium alloys extruded profiles for general engineering[S]. 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com