Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Non-probabilistic optimization design of frame structure for 150 kN biaxial tensile test machine
Authors: Guan Bobin 1 2 Zhang Yisheng1 2 Zhao Zhe2 3 Wu Xiangdong 2 Wan Min 2 
Unit: 1.Science and Technology on Space Physics Laboratory  China Academy of Launch Vehicle Technology 2.School of Mechanical Engineering and Automation  Beihang University 3.Beijing Institute of Precision Mechatronics and Controls 
KeyWords: biaxial tensile test machine  non-probabilistic optimization  structural lightweighting  uncertainty analysis topology optimization 
ClassificationCode:TH122
year,vol(issue):pagenumber:2025,50(7):173-182
Abstract:

 For the problem of heavy structure and insufficient precision of biaxial tensile test machine designed by the traditional method, the non-probabilistic optimization design framework combining Kriging model and Taylor expansion was proposed and applied to the lightweight design of 150 kN frame structure. Then, the non-probabilistic optimization model of frame structure was established, and a solution process was proposed. Furthermore, the uncertainty of frame material properties was tested and characterized, and the uncertainty analysis on the topological optimized frame structure was conducted by Kriging model and Taylor expansion. Finally, the frame structure was optimized by genetic algorithm, and the analysis results show that the material properties of 150 kN frame are uncertain, and it is difficult to obtain the optimal lightweight frame structure by topology optimization. Its deterministic result shows the risk of violating the design requirements. Thus, the proposed non-probabilistic optimization design framework effectively achieves the structure lightweighting and ensure that it strictly meets the design requirements,the 150 kN frame after topology optimization achieves a weight reduction of 12.95%.

Funds:
国家自然科学基金资助项目 (51875027)
AuthorIntro:
作者简介:关铂镔(1996-),男,博士,工程师 E-mail:2725385673@qq.com 通信作者:吴向东(1970-),男,博士,副教授 E-mail:wuxiangdongbuaa@163.com
Reference:

 [1]Ferron G, Makinde M. Design and development of a biaxial strength testing device [J]. Journal of Testing and Evaluation, 1988, 16(3): 253-256.


 


[2]Tasan C C, Hoefnagels J, Quaak G, et al. Inplane biaxial loading of sheet metal until fracture [A]. 11th International Congress and Exhibition on Experimental and Applied[C]. Orlando, Florida, USA, 2008.


 


[3]Boehler J P, Demmerle S, Koss S. A new direct biaxial testing machine for anisotropic materials [J]. Experimental Mechanics, 1994, 34(1): 1-9.


 


[4]ISO 16842:2021, Metallic materialsSheet and stripBiaxial tensile testing method using a cruciform test piece [S].


 


[5]Wu X D, Wan M, Zhou X B. Biaxial tensile testing of cruciform specimen under complex loading [J]. Journal of Materials Processing Technology, 2005, 168(1): 181-183.


 


[6]熊晶洲,万敏,孟宝,等. 基于多轴同步控制的微尺度双向伺服加载系统 [J]. 北京航空航天大学学报,2019, 45(1): 174-182.


 


Xiong J Z, Wan M, Meng B, et al. Microscaled biaxial loading test system based on multiaxis synchronous control [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 174-182.


 


[7]高亮, 邱浩波, 肖蜜,等. 优化驱动的设计方法 [M]. 北京:清华大学出版社, 2020.


 


Gao L, Qiu H B, Xiao M, et al. Optimizationdriven Design Method [M]. Beijing: Tsinghua University Press, 2020.


 


[8]Zhao X H, Liu Y X, Hua L, et al. Finite element analysis and topology optimization of a 12000 kN fine blanking press frame [J]. Structural and Multidisciplinary Optimization, 2016, 54(2): 375-389.


 


[9]Ma H F, Wang J X, Lu Y N, et al. Lightweight design of turnover frame of bridge detection vehicle using topology and thickness optimization [J]. Structural and Multidisciplinary Optimization, 2019, 59(3): 1007-1019.


 


[10]Lu S B, Ma H G, Xin L, et al. Lightweight design of bus frames from multimaterial topology optimization to crosssectional size optimization [J]. Engineering Optimization, 2019, 51(6): 961-977.


 


[11]Guan B B, Wan M, Wu X D, et al. Lightweight design process considering assembly connection and nonprobabilistic uncertainty with its application to machine structural design [J]. Engineering Optimization, 2023, 55: 1060-1081.


 


[12]Wen Y, Chen X Q, Luo W C, et al. Review of uncertaintybased multidisciplinary design optimization methods for aerospace vehicles [J]. Progress in Aerospace Sciences, 2011, 47(6): 450-479.


 


[13]Wang X J, Shi Q H, Fan W C, et al. Comparison of the reliabilitybased and safety factor methods for structural design [J]. Applied Mathematical Modelling, 2019, 72: 68-84.


 


[14]Meng Z, Hao P, Li G, et al. Nonprobabilistic reliabilitybased design optimization of stiffened shells under buckling constraint [J]. ThinWalled Structures, 2015, 94: 325-333.


 


[15]Luo Z X, Wang X J, Shi Q H, et al. UBCconstrained nonprobabilistic reliabilitybased optimization of structures with uncertainbutbounded parameters [J]. Structural and Multidisciplinary Optimization, 2021, 63(1): 311-326.


 


[16]Acar P. Recent progress of uncertainty quantification in smallscale materials science [J]. Progress in Materials Science, 2021, 117: 100723.


 


[17]Zhang Y S, Wu X D, Guan B B, et al. Application and practical validation of topology optimization technology for the frame of biaxial tensile testing machine [J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1519-1533.


 


[18]Ni B Y, Jiang C, Huang Z L. Discussions on nonprobabilistic convex modelling for uncertain problems [J]. Applied Mathematical Modelling, 2018, 59: 54-85.


 


[19]Guan B B, Wan M, Wu X D, et al. Nonprobabilistic optimization model of engineering structures with dependent interval variables [J]. Applied Mathematical Modelling, 2022, 102: 285-304.


 


[20]Jiang C, Zhang Q F, Han X, et al. Multidimensional parallelepiped model-A new type of nonprobabilistic convex model for structural uncertainty analysis [J]. International Journal for Numerical Methods in Engineering, 2015, 103(1): 31-59.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com