Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Microstructure evolution and mechanical properties in different deformation zones of superalloy GH4720Li disk forgings
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG132.3
year,vol(issue):pagenumber:2025,50(8):11-19
Abstract:

 In order to explore the influence of uneven force on the microstructure and properties of superalloy GH4720Li during the forging process, the microstructures in different deformation zones of superalloy GH4720Li forgings were characterized, and the mechanical property tests were conducted. The results indicate that there are differences in the microstructures of different deformation zones of forgings. The grains in the large deformation zone are uniform and fine, while there are a large number of incompletely recrystallized structures and fine grain bands in the difficult deformation zone. The grain size in the small deformation zone is not much different from the grain size of bar. The results of scanning electron microscopy (SEM) show that a considerable amount of primary γ′ phase melts during the forging process, and the secondary γ′ phase almost completely melts during the forging heating process and precipitates again during the forging and cooling process. The secondary γ′ phase in the large deformation zone is coarsened, the secondary γ′ phase in the difficult deformation zone precipitates less, and the secondary γ′ phase in the small deformation zone is uniform and fine. The results of electron backscatter diffraction (EBSD) show that there are a large number of small-angle grain boundaries (LAGBs) in the matrix of the large deformation zone, and the content of small-angle grain boundaries (LAGBs) in the difficult deformation zone and small deformation zone are lawer. At room temperature, the strength and plasticity of the large deformation zone with the finest grains are the highest. At 650 ℃, the strength of grain boundaries decreases, while the strength and plasticity of the small deformation zone with coarse grains and uniform and fine γ′ phase are the highest. 

 
Funds:
内蒙古自治区科技计划项目(2021GG0266)
AuthorIntro:
作者简介:周星(1998-),男,硕士研究生 E-mail:15541555629@163.com 通信作者:董瑞峰(1972-),女,博士,教授 E-mail:drfcsp@163.com
Reference:

 [1]杜金辉,曲敬龙,邓群. GH720Li合金的铸态组织和均匀化工艺[J]. 钢铁研究学报, 2005, 17(3): 60-64.


Du J H, Qu J L, Deng Q. As-cast microstructure and homogenization process of alloy GH720Li[J]. Journal of Iron and Steel Reserch, 2005, 17(3):60-64.

[2]曲敬龙, 易出山, 陈竞炜. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8):73-83.

Qu J L, Yi C S, Chen J W. Research progress of precipitated phase in GH4720Li superalloy [J]. Journal of Materials Engineering, 2020, 48(8):73-83.

[3]张瑞, 刘鹏, 崔传勇, 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228.

Zhang R, Liu P, Cui C Y, et al. Present research situation and prospect of hot working of cast & wrought superalloys for aero-engine turbine disk in China[J]. Acta Metallurgcia Sinica, 2021, 57(10):1215-1228.

[4]孟令胜, 段方震, 安腾. γ/γ′共晶相对GH4720Li合金耐腐蚀性能的影响[J]. 中国冶金, 2020, 30(7): 35-40.

Meng L S, Duan F Z, An T. Effects of γ/γ′ eutectic on corrosion resistance of GH4720Li superalloys [J]. China Metallurgy, 2020, 30(7):35-40.

[5]曲敬龙, 毕中南, 杜金辉. GH4720Li合金盘锻件的等温锻造工艺优化研究[J]. 钢铁研究学报, 2011, 23(S2): 243-246.

Qu J L, Bi Z N, Du J H. Research on process optimization of isothermal forging for superalloys GH4720Li disc[J]. Journal of Iron and Steel Research, 2011, 23(S2): 243-246.

[6]阚志, 杜林秀, 胡军. GH4720Li合金热变形行为和相变[J]. 稀有金属材料与工程, 2016, 45(2): 363-368.

Kan Z, Du L X, Hu J. Hot Deformation behavior and phase transformation of GH4720Li alloy[J]. Rare Metal Materials and Engineering, 2016, 45(2):363-368.

[7]王涛, 曹澜川, 万志鹏. GH4720Li铸态合金热变形动态再结晶预测[J]. 热加工工艺, 2022, 51(8): 48-52, 58.

Wang T, Cao L C, Wan Z P. Prediction on dynamic recrystallization of GH4720Li cast superalloys during hot deformation[J]. Hot Working Technology, 2022, 51(8): 48-52, 58.

[8]唐超, 张筱萌, 罗俊鹏. 固溶温度对GH4720Li合金显微组织和力学性能的影响[J]. 金属热处理, 2021, 46(6): 177-185.

Tang C, Zhang X M, Luo J P. Effect of solution temperature on microstructure and mechanical properties of GH4720Li alloy[J]. Heat Treatment of Metals, 2021, 46(6): 177-185.

[9]王涛, 万志鹏, 李钊. 热处理工艺对GH4720Li合金细晶铸锭组织与热加工性能的影响[J]. 金属学报, 2020, 56(2): 182-192.

Wang T, Wan Z P, Li Z. Effect of heat treatment parameters on microstructure and hot workability of as-cast fine grain ingot of GH4720Li alloy[J]. Acta Metallurgica Sinica, 2020, 56(2): 182-192.

[10]阚志, 杜林秀. 热处理工艺对GH4720Li合金组织演化的影响[J]. 材料热处理学报, 2016, 37(8): 84-88.

Kan Z, Du L X. Influence of heat treatment processes on microstructure evolution of GH4720Li alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(8): 84-88.

[11]Zhang W,Li J N, Dong R F. Effect of heat treatment process parameters on the microstructure and properties of GH4720Li superalloys[J]. Materials Research Express, 2023, 10(1):016514.

[12]李靖南, 董瑞峰, 陈子帅. 梯度加热工艺对自由锻GH4720Li高温合金成形性能的影响[J]. 稀有金属, 2022, 46(2): 162-168.

Li J N, Dong R F, Cheng Z S. Formability of free forging GH4720Li superalloys with different gradient heating process [J]. Chinese Journal of Rare Metals, 2022, 46(2): 162-168.

[13]Zhang H K, Li Y, Ma T F. Tailoring of nanoscale γ′ precipitates and unveiling their strengthening mechanisms in multimodal nickel-based superalloys GH4720Li[J]. Materials Characterization, 2022, 188: 111918

[14]Zhang P, Yuan Y, Gu Y F. Investigation on the tensile deformation mechanisms in a new Ni-Fe-base superalloys HT700T at 750 ℃[J]. Journal of Alloys and Compounds, 2020, 825: 154012.

[15]Sun F, Gu Y F, Yan J B. Tensile deformation-induced dislocation configurations at intermediate temperatures in a Ni-Fe-based superalloys for advanced ultra-supercritical coal-fired power plants[J]. Journal of Alloys and Compounds, 2016, 657: 565-569.

[16]Dang C X, Zhang P, Li J. The role of <112>{111} slip in the initial plastic deformation of Ni-base superalloys at room temperature[J]. Materials Characterization, 2020, 170: 110648.

[17]Senkov O N, Miracle D B, Scott J M. Development and characterization of Ca-Mg-Zn-Cu bulk metallic glasses[J]. Intermetallics, 2006, 14(8-9):1055-1060.

[18]Yanushkevich Z, Belyakov A, Kaibyshev R. Microstructural evolution of a 304 type austenitic stainless steel during rolling at temperatures of 773-1273 K[J]. Acta Materialia, 2015, 82: 244-254.

[19]Jiang S H, Wang H, Wu Y. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544(7651):460-464.

[20]Kim S H, Kim H, Kim N J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518(7537): 790-784

[21]He J Y, Wang H, Huang H L. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Materialia, 2016, 102: 187-196.

[22]Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases[J]. Acta Materialia, 2016, 116: 332-342.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com