Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Finite element analysis on microstructure in portholes-equal channel angular pressing spread extrusion for aluminium alloy
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG376.2
year,vol(issue):pagenumber:2025,50(8):131-138
Abstract:

 In order to understand the microstructure evolution law of portholes-equal channel angular pressing spread extrusion aluminum alloy, for 6005A aluminum alloy, based on the mathematical model of recrystallization equation YADA, the micro deformation characteristics were studied by combining finite element analysis and experimental research. The accuracy of the model was verified by metallographic analysis, and the recrystallization volume fraction, recrystallized grain size and final grain size during the extrusion process  were obtained.The research results reveal the grain refinement phenomenon of 6005A aluminum alloy during the hot extrusion process and determine the evolution law of characteristic points. Finally, the sheet with the recrystallization volume fraction of 100% and the grain size of 15.75-19.92 μm are extruded sucessfully, which lays the foundation for the microstructural prediction of portholes-equal channel congular pressing spread extrusion.

Funds:
河南省科技攻关项目(242102230066,242102231017,242102230047)
AuthorIntro:
作者简介:石磊(1980-),男,博士,副教授 E-mail:shilei207207@163.com 通信作者:卢志文(1966-),男,博士,教授 E-mail:1796879656@qq.com
Reference:

 [1]石磊. 铝合金等通道转角分流大宽展挤压成形机理研究[D]. 西安:西北工业大学, 2015.


Shi L. Investigation on Deformation Mechanism of Aluminum Alloy during Porthole ECAP Spread Extrusion[D]. Xi′an: Northwestern Polytechnical University, 2015.

[2]吴新民. 我国高速列车技术的科技攻关[J]. 机车电传动, 2024(3): 6-15.

Wu X M. Scientific and technological research in China′s high-speed train technology[J]. Electric Drive for Locomotives, 2024(3): 6-15.

[3]文超, 朱正锋, 王群, 等. 7×××系超高强铝合金在我国轨道交通车辆的研究应用现状与展望[J]. 金属热处理, 2024, 49(3): 302-312.

Wen C, Zhu Z F, Wang Q, et al. Research application status and prospect of 7××× series ultra-high strength aluminum alloy in rail transit vehicles in China [J]. Heat Treatment of Metals, 2024, 49(3): 302-312.

[4]金文福, 邓鑫, 周金旭, 等. 高速列车底板型材激光-熔化极惰性气体保护复合焊接试验[J]. 装备机械, 2024(1): 67-70.

Jin W F, Deng X, Zhou J X, et al. Laser-MIG composite welding test of bottom plate profile of high-speed train [J]. The Magazine on Equipment Machinery, 2024(1): 67-70.

[5]Shi L, Yang H, Guo L G, et al. Large-scale manufacturing of aluminum alloy plate extruded from subsize billet by new porthole-equal channel angular processing technique [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(5): 1521-1530.

[6]Wang X R, Zhu T, Zhang J K, et al. Effect of material failure criteria on collision behavior of metro vehicle end structures[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2023, 237(4): 419-428.

[7]王琳. 2219铝合金薄壁筒形件反挤压成形工艺仿真与试验研究[D]. 长沙:中南大学, 2023.

Wang L. Simulation and Experimental Research on Backward Extrusion Process of 2219 Aluminum Alloy Thin-walled Tube Parts[D]. Changsha: Central South University, 2023.

[8]李世康. 6063铝合金分流模挤压焊合组织及力学性能研究[D]. 长沙:湖南大学, 2019.

Li S K. Study on the Welding Microstructure and Mechanical Property of 6063 Aluminum Alloy Porthole Die Extrusion[D]. Changsha: Hunan University, 2019.

[9]陈刚. 超高强铝合金Al-12Zn-2.4Mg-1.2Cu热变形特性及应用研究[D]. 太原:中北大学, 2016.

Chen G. Study on Thermal Deformation Characteristics and Application of the Al-12Zn-2.4Mg-1.2Cu Ultra High Strength Aluminum Alloy[D]. Taiyuan: North University of China, 2016.

[10]石磊, 杨合, 郭良刚, 等. 6005A铝合金压缩变形组织分析及动态再结晶模型[J]. 塑性工程学报, 2014, 21(2): 65-70.

Shi L, Yang H, Guo L G, et al. Dynamic recrystallization model of 6005A aluminum alloy at elevated temperature based on microstructure analysis of hot compression [J]. Journal of Plasticity Engineering, 2014, 21(2): 65-70.

[11]李健, 何涛, 贾东昇, 等. 等通道转角挤压对真空吸铸成形纯铝力学性能及微观组织的影响[J]. 锻压技术, 2023, 48(11): 60-66.

Li J, He T, Jia D S, et al. Influence of equal channel angular pressing on mechanical properties and microstructure for pure aluminum formed by vacuum suction casting [J]. Forging & Stamping Technology, 2023, 48(11): 60-66.

[12]张永皞, 范啟超, 孙明艳, 等.等径角挤压(ECAP)技术在NiTi基形状记忆合金中的研究进展[J]. 稀有金属, 2023, 47(9): 1263-1273.

Zhang Y H, Fan Q C, Sun M Y, et al. Development of equal channel angular pressing in NiTi-based shape memory alloy[J]. Chinese Journal of Rare Metals, 2023, 47(9): 1262-1273.

[13]Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing [J]. Acta Materialia, 2004, 52(15): 4589-4599.

[14]Shi L, Yang H, Guo L G, et al. Constitutive deformation modeling in high temperature forging of a 6005A aluminum alloy[J]. Materials and Design, 2014, 54: 576-581.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com