Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of strain rate on properties and fracture for transformation induced plasticity steel
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG142.1+2;U463.83
year,vol(issue):pagenumber:2025,50(8):283-291
Abstract:

  For 690 MPa grade transformation induced plasticity steel HC400/690TRD+Z, the influences of strain rate on its properties and fracture were analyzed. The mechanical properties of material under six strain rates were tested by using the hydraulic servo high-speed tensile testing machine. The micro-morphology of fracture and the cross-sectional microstructure of samples were observed. Based on XRD, the contents of residual austenite at the fracture under different strain rates were quantitatively analyzed. The results show that transformation induced plasticity steel HC400/690TRD+Z exhibits strong positive sensitivity to strain rate. With the increasing of strain rate, the yield strength increases by 19.03%, the tensile strength increases by 20.36%, while the yield strength ratio basically remains at 0.61. The increase amplitude of material strength decreases from high to low, and finally gradually slows down. In the strain rate range of no more than 100 s-1, the enhancement trends of elongation after fracture, strength-plasticity product and fracture energy absorption are obvious, and then gradually levels off. The uniform elongation shows a trend of gradually decreasing. The fracture of sample at each strain rate presents a typical ductile fracture, and the density and size of dimples increase with the increasing of strain rate. The content of residual austenite in the fracture area gradually decreases with the increasing of strain rate. When the strain rate reaches 1000 s-1, the content of residual austenite is only 37.5% of the base strain rate. The phase transformation of residual austenite in the phase transformation induced plasticity steel is greatly affected by the strain rate, which has a significant influence on the mechanical properties and plastic characteristics.

Funds:
河南省新一轮重点学科-机械(0203240011);河南省高等学校重点科研项目计划(23A460025)
AuthorIntro:
作者简介:王康(1992-),男,硕士,讲师 E-mail:769698550@qq.com
Reference:

 [1]冯毅,张德良,高翔,等.面向新能源时代的汽车用钢EVI工程技术发展[J].汽车工艺与材料, 2023(9):8-15.


Feng Y, Zhang D L, Gao X, et al. Development of EVI engineering technologies for automotive steel in the new energy era [J]. Automobile Technology & Material, 2023(9): 8-15.

[2]韩赟,刘华赛,肖宝亮.我国汽车用钢开发应用现状及发展趋势[J].轧钢, 2024, 41(5):108-120.

Han Y, Liu H S, Xiao B L. Progress in the development and application of automotive steels in China [J]. Steel Rolling, 2024, 41(5): 108-120.

[3]Mastsumura O, Sakuma Y, Takechi H. Retained austenite in 0.4C-1.5Si-0.8Mn steel sheet intercritical heated and austempered [J]. ISIJ International, 1987, 27(9): 570-579. 

[4]Mastsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritically annealed 0.4C-1.5Si-0.8Mn[J]. Trans. ISIJ, 1992, 32(9): 1014-1020.

[5]张伟,潘跃,刘华赛,等. 应变速率对增强成形性双相钢性能影响分析[J]. 钢铁,2022,57(4):123-129.

Zhang W, Pan Y, Liu H S, et al. Effect of strain rate on properties of dual phase steel with high formability [J]. Iron & Steel, 2022, 57(4): 123-129.

[6]于沛,夏卿.相变诱导塑性钢高应变速率性能和失效行为分析[J].锻压技术,2023,48(4):256-264.

Yu P, Xia Q. Analysis on high strain rate properties and failure behavior of transformation induced plasticity steel [J]. Forging & Stamping Technology, 2023, 48(4): 256-264.

[7]徐莉,郑崇嵩,侯聚英,等.车用双相高强钢的动态力学性能及本构模型的对比[J].机械工程材料,2023,47(11):74-80.

Xu L, Zheng C S, Hou J Y, et al. Dynamic mechanical properties and constitutive model contrast of dual-phase high strength steel for vehicles [J]. Materials for Mechanical Engineering, 2023, 47(11): 74-80.

[8]唐天宇,黄亮,徐佳辉,等.2219铝合金高应变速率本构模型及其电磁成形应用评估[J].锻压技术,2024,49(5):125-134.

Tang T Y, Huang L, Xu J H, et al. High strain rate constitutive model and electromagnetic forming application evaluation for 2219 aluminum alloy [J]. Forging & Stamping Technology, 2024, 49(5): 125-134.

[9]武欣,方正,李国.1300 MPa级热成形钢高应变速率本构模型分析[J].塑性工程学报,2023,30(7):118-126.

Wu X, Fang Z, Li G. Analysis of high strain rate constitutive model of 1300 MPa hot-stamped steel [J]. Journal of Plasticity Engineering, 2023, 30(7): 118-126.

[10]汪洪波,孙巧妍,贾大伟,等.TRIP980钢的组织性能调控与动态本构模型[J].塑性工程学报,2024,31(7):168-174.

Wang H B, Sun Q Y, Jia D W, et al. Structure and properties control and dynamic constitutive model of TRIP980 steel [J]. Journal of Plasticity Engineering, 2024, 31(7): 168-174.

[11]GB/T 228.1—2021,金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2021,Metallic materials—Tensile testing—Part 1: Method of test at room temperature test [S].

[12]GB/T 30069.2—2016,金属材料高应变速率拉伸试验第2部分:液压伺服型与其他类型试验系统[S].

GB/T 30069.2—2016, Metallic material—Tensile testing at high strain rates—Part 2: Servo-hydraulic and other test systems[S].

[13]张伟,李春光,韩赟,等.高强双相钢动态力学本构模型对比分析[J].塑性工程学报, 2021, 28(6): 75-82.

Zhang W, Li C G, Han Y, et al. Comparative analysis of dynamic mechanical constitutive model of high strength dual phase steel [J]. Journal of Plasticity Engineering, 2021, 28(6): 75-82.

[14]刘海娜,梅运东,刘领兵.应变速率对低合金高强钢性能的影响[J].锻压技术, 2023, 48(6):253-257.

Liu H N, Mei Y D, Liu L B. Influence of strain rate on properties for low alloy high strength steel [J]. Forging & Stamping Technology, 2023, 48(6): 253-257.

[15]郭会娟,周亚军,张勤.材料应变率模型对汽车B柱侧面碰撞影响分析[J].机械设计与制造,2023(4):158-162.

Guo H J, Zhou Y J, Zhang Q. Influence analysis of the material strain rate model on the automotive B-pillar side impact [J]. Machinery Design & Manufacture, 2023(4): 158-162.

[16]李贺军,田晓光,任小中.冷轧双相钢疲劳断裂行为及组织分析[J].塑性工程学报,2023,30(7):151-158.

Li H J, Tian X G, Ren X Z. Analysis of fatigue fracture behavior and microstructure of cold rolled dual phase steel [J].Journal of Plasticity Engineering,2023,30(7):151-158.

[17]张光莹,定巍,李岩,等.预处理工艺对中锰TRIP钢微观组织和力学性能的影响[J].金属热处理,2023,48(5):259-264.

Zhang G Y, Ding W, Li Y, et al. Effect of pretreatment process on microstructure and mechanical properties of medium manganese TRIP steel [J]. Heat Treatment of Metals, 2023, 48(5): 259-264.

[18]傅萍,王钰珏,何存富,等. 用于DH590钢塑性变形和残余奥氏体表征的多维微磁参量综合评价指标[J]. 实验力学,2024,39(3):261-277.

Fu P, Wang Y J, He C F, et al. Comprehensive indicator of multi-dimensional micromagnetic parameters for evaluation of plastic deformation and residual austenite of DH590 steel [J]. Journal of Experimental Mechanics, 2024, 39(3): 261-277.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com