网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
超声滚挤压风电轴承材料表面粗糙度加工参数敏感性研究
英文标题:Sensitivity study on surface roughness processing parameters for wind turbine bearing materials by ultrasonic rolling extrusion
作者:   雁1 2    佳1 2    斌1 2 王晓强3 
单位:1. 河南省果园管理特种机器人工程技术研究中心 2. 河南林业职业学院 3. 河南科技大学 
关键词:超声滚挤压 42CrMo钢 表面粗糙度 指数函数预测模型 参数敏感性 加工参数区间 
分类号:TH161
出版年,卷(期):页码:2022,47(1):98-105
摘要:

 为了确定给定范围内的超声滚挤压风电轴承材料表面粗糙度加工参数的最优区间,以42CrMo钢风电轴承材料试样为研究对象,开展超声滚挤压表面粗糙度试验,基于试验结果构建表面粗糙度指数函数预测模型,分析加工参数对表面粗糙度及其灵敏度的影响,确定加工参数的稳定域和非稳定域,优选出最佳的超声滚挤压42CrMo钢表面粗糙度加工参数区间。研究结果表明:加工参数对表面粗糙度的影响程度大小依次为静压力Fs、工件转速n、进给速度f、振幅A。其中,n的优选区间为500~600 r·min-1,f的优选区间为35~45 mm·min-1,A的优选区间为15~20 μm,Fs的优选区间为400~500 N。

 In order to obtain the optimal range of surface roughness processing parameters for wind turbine bearing materials by the ultrasonic rolling extrusion within a given range, for wind turbine bearing materials sample made of 42CrMo steel, the ultrasonic rolling extrusion the surface roughness test was conducted, and the surface roughness exponential function prediction model was constructed based on the test result. Then, the influences of the processing parameters on the surface roughness and the sensitivity were analyzed, the stable and non-stable regions of processing parameters were determined, and the best ranges of surface roughness processing parameters for ultrasonic rolling extrusion 42CrMo steel were selected. The results show that the influence degree of the processing parameters on the surface roughness is static pressure Fs, rotate speed n of workpiece, feeding speed f and amplitude A, and the optimal range of n, f, A and  Fs is 500-600 r·min-1, 35-45 mm·min-1, 15-20 μm and 400-500 N, respectively.

基金项目:
国家自然科学基金资助项目(U1804145)
作者简介:
作者简介:任 雁(1984-),女,硕士,讲师 E-mail:271804648@qq.com 通信作者:刘 佳(1992-),女,硕士,助教 E-mail:920828732@qq.com
参考文献:

 [1]   王晓强, 阮孝林, 崔凤奎, 等. 超声滚挤压表面硬度预测模型研究[J]. 机械强度, 2020, 42(4): 811-816.


Wang X Q, Ruan X L, Cui F K, et al. Study on prediction model of surface hardness in ultrasound rolling extrusion[J]. Journal of Mechanical Strength, 2020, 42(4): 811-816.

[2]   刘佳. 精密轴承内圈超声滚挤压加工表面微观形貌研究[D]. 洛阳:河南科技大学, 2017.

Liu J. Study on Microtopography of Ultrasonic Rolling Extrusion Process of Precision Bearing Inner Ring[D]. Luoyang: Henan University of Science and Technology, 2017.

[3]   刘志飞, 王晓强, 朱其萍, 等. 超声滚挤压轴承套圈的表层性能预测模型建立及工艺参数优化[J]. 锻压技术, 2021, 46(3): 118-125.

Liu Z F, Wang X Q, Zhu Q P, et al. Establishment on prediction model of surface performance for ultrasonic roll extrusion bearing ring and optimization on process parameters[J]. Forging & Stamping Technology, 2021, 46(3): 118-125.

[4]   Lotfi Mohammad, Amini Saeid. FE simulation of linear and elliptical ultrasonic vibrations in turning of Inconel 718[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232 (4): 438-448.

[5]   Ren S, Zhao Y L, Yao J T, et al. Enhanced surface properties and microstructure evolution of Cr12MoV using ultrasonic surface rolling process combined with deep cryogenic treatment[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 1132-1140.

[6]   Xu X C, Liu D X, Zhang X H, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. Journal of Materials Science & Technology, 2019, 62: 156-169.

[7]   程明龙, 肖勇, 刘康宁, 等. 超声振动滚挤压对金属表面微观组织的影响[J]. 工具技术, 2019, 53(7): 73-76.

Cheng M L, Xiao Y, Liu K J, et al. Investigations on effects of ultrasonic rolling process on surface microstructure of steel[J]. Tool Engineering, 2019, 53(7): 73-76.

[8]   刘宇, 王立君, 王东坡, 等. 超声表面滚压加工40Cr表层的纳米力学性能[J]. 天津大学学报, 2012, 45(7): 656-661.

Liu Y, Wang L J, Wang D P, et al. Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing[J]. Journal of Tianjin University, 2012, 45(7): 656-661.

[9]   吕光义, 朱有利, 李礼, 等. 超声深滚对TC4钛合金表面形貌和表面粗糙度的影响[J]. 中国表面工程, 2007, (4): 38-41.

Lyu G Y, Zhu Y L, Li L, et al. The effect of ultrasonic deep rolling (UDR) on surface topography and surface roughness of TC4 titanium alloy[J]. China Surface Engineering, 2007, (4): 38-41.

[10]郑建新, 任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018, 29(13): 1622-1626.

Zheng X J, Ren Y C. Comprehensive assessment of surface integrity in two dimensional ultrasonic rolling 7050 aluminum alloys[J]. China Mechanical Engineering, 2018, 29(13): 1622-1626.

[11]姚成霖, 童景琳, 焦锋, 等. 超声滚压加工6163铝合金的表面粗糙度研究[J]. 工具技术, 2017, 51(8): 87-89.

Yao C L, Tong J L, Jiao F, et al. Experiment and study on surface roughness of ultrasonic auxiliary rolling on aluminum alloy 6163[J]. Tool Engineering, 2017, 51(8): 87-89.

[12]崔凤奎, 苏涌翔, 荣莎莎, 等. 超声滚挤压轴承套圈表面粗糙度数学模型对比分析[J]. 塑性工程学报, 2018, 25(5): 199-204.

Cui F K, Su Y X, Rong S S, et al. Comparative analysis of mathematical model for surface roughness of ultrasonic rolling extrusion bearing rings[J]. Journal of Plasticity Engineering, 2018, 25(5): 199-204.

[13]王晓强, 刘东亚, 阮孝林, 等. 42CrMo轴承钢超声滚挤压表面加工硬化程度研究[J]. 机械科学与技术,2020,39(2):1923-1929.

Wang X Q, Liu D Y, Ruan X L, et al. Study on work hardening degree of 42CrMo bearing steel by ultrasound rolling extrusion[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(2):1923-1929.

[14]王晓强, 刘鑫, 姚国林, 等. 风电轴承材料超声滚挤压表面粗糙度数值模拟及参数优化[J]. 塑性工程学报, 2020, 27(9): 20-26.

Wang X Q, Liu X, Yao G L, et al. Numerical simulation and parameter optimization of surface roughness of ultrasonic rolling extrusion for wind power bearing material[J]. Journal of Plasticity Engineering, 2020, 27(9): 20-26.

[15]陈龙, 黄璞, 王炯, 等. 基于正交试验和灰色系统理论的拼焊板前纵梁成形优化[J]. 塑性工程学报, 2012, 19(4): 1-5.

Chen L, Huang P, Wang J, et al. Optimization of tailorwelded front longitudinal froming based on orthogonal experiment and grey system theory[J]. Journal of Plasticity Engineering, 2012, 19(4): 1-5.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9