[1] 王晓强, 阮孝林, 崔凤奎, 等. 超声滚挤压表面硬度预测模型研究[J]. 机械强度, 2020, 42(4): 811-816.
Wang X Q, Ruan X L, Cui F K, et al. Study on prediction model of surface hardness in ultrasound rolling extrusion[J]. Journal of Mechanical Strength, 2020, 42(4): 811-816.
[2] 刘佳. 精密轴承内圈超声滚挤压加工表面微观形貌研究[D]. 洛阳:河南科技大学, 2017.
Liu J. Study on Microtopography of Ultrasonic Rolling Extrusion Process of Precision Bearing Inner Ring[D]. Luoyang: Henan University of Science and Technology, 2017.
[3] 刘志飞, 王晓强, 朱其萍, 等. 超声滚挤压轴承套圈的表层性能预测模型建立及工艺参数优化[J]. 锻压技术, 2021, 46(3): 118-125.
Liu Z F, Wang X Q, Zhu Q P, et al. Establishment on prediction model of surface performance for ultrasonic roll extrusion bearing ring and optimization on process parameters[J]. Forging & Stamping Technology, 2021, 46(3): 118-125.
[4] Lotfi Mohammad, Amini Saeid. FE simulation of linear and elliptical ultrasonic vibrations in turning of Inconel 718[J]. Proceedings of the Institution of Mechanical Engineers, 2018, 232 (4): 438-448.
[5] Ren S, Zhao Y L, Yao J T, et al. Enhanced surface properties and microstructure evolution of Cr12MoV using ultrasonic surface rolling process combined with deep cryogenic treatment[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 1132-1140.
[6] Xu X C, Liu D X, Zhang X H, et al. Mechanical and corrosion fatigue behaviors of gradient structured 7B50-T7751 aluminum alloy processed via ultrasonic surface rolling[J]. Journal of Materials Science & Technology, 2019, 62: 156-169.
[7] 程明龙, 肖勇, 刘康宁, 等. 超声振动滚挤压对金属表面微观组织的影响[J]. 工具技术, 2019, 53(7): 73-76.
Cheng M L, Xiao Y, Liu K J, et al. Investigations on effects of ultrasonic rolling process on surface microstructure of steel[J]. Tool Engineering, 2019, 53(7): 73-76.
[8] 刘宇, 王立君, 王东坡, 等. 超声表面滚压加工40Cr表层的纳米力学性能[J]. 天津大学学报, 2012, 45(7): 656-661.
Liu Y, Wang L J, Wang D P, et al. Nano mechanical properties of 40Cr surface layer after ultrasonic surface rolling processing[J]. Journal of Tianjin University, 2012, 45(7): 656-661.
[9] 吕光义, 朱有利, 李礼, 等. 超声深滚对TC4钛合金表面形貌和表面粗糙度的影响[J]. 中国表面工程, 2007, (4): 38-41.
Lyu G Y, Zhu Y L, Li L, et al. The effect of ultrasonic deep rolling (UDR) on surface topography and surface roughness of TC4 titanium alloy[J]. China Surface Engineering, 2007, (4): 38-41.
[10]郑建新, 任元超. 7050铝合金二维超声滚压加工表面完整性综合评价[J]. 中国机械工程, 2018, 29(13): 1622-1626.
Zheng X J, Ren Y C. Comprehensive assessment of surface integrity in two dimensional ultrasonic rolling 7050 aluminum alloys[J]. China Mechanical Engineering, 2018, 29(13): 1622-1626.
[11]姚成霖, 童景琳, 焦锋, 等. 超声滚压加工6163铝合金的表面粗糙度研究[J]. 工具技术, 2017, 51(8): 87-89.
Yao C L, Tong J L, Jiao F, et al. Experiment and study on surface roughness of ultrasonic auxiliary rolling on aluminum alloy 6163[J]. Tool Engineering, 2017, 51(8): 87-89.
[12]崔凤奎, 苏涌翔, 荣莎莎, 等. 超声滚挤压轴承套圈表面粗糙度数学模型对比分析[J]. 塑性工程学报, 2018, 25(5): 199-204.
Cui F K, Su Y X, Rong S S, et al. Comparative analysis of mathematical model for surface roughness of ultrasonic rolling extrusion bearing rings[J]. Journal of Plasticity Engineering, 2018, 25(5): 199-204.
[13]王晓强, 刘东亚, 阮孝林, 等. 42CrMo轴承钢超声滚挤压表面加工硬化程度研究[J]. 机械科学与技术,2020,39(2):1923-1929.
Wang X Q, Liu D Y, Ruan X L, et al. Study on work hardening degree of 42CrMo bearing steel by ultrasound rolling extrusion[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(2):1923-1929.
[14]王晓强, 刘鑫, 姚国林, 等. 风电轴承材料超声滚挤压表面粗糙度数值模拟及参数优化[J]. 塑性工程学报, 2020, 27(9): 20-26.
Wang X Q, Liu X, Yao G L, et al. Numerical simulation and parameter optimization of surface roughness of ultrasonic rolling extrusion for wind power bearing material[J]. Journal of Plasticity Engineering, 2020, 27(9): 20-26.
[15]陈龙, 黄璞, 王炯, 等. 基于正交试验和灰色系统理论的拼焊板前纵梁成形优化[J]. 塑性工程学报, 2012, 19(4): 1-5.
Chen L, Huang P, Wang J, et al. Optimization of tailorwelded front longitudinal froming based on orthogonal experiment and grey system theory[J]. Journal of Plasticity Engineering, 2012, 19(4): 1-5.
|