网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
35钢延长拉杆过热断裂原因分析
英文标题:Analysis on reasons of overheating fracture for 35 steel extension rod
作者:郭新良 代克顺 杨迎春 虞鸿江 焦宗寒 周静波 
单位:云南电网有限责任公司电力科学研究院 
关键词:延长拉杆 引流线夹 蠕变 过热断裂 输电线路 
分类号:TM241
出版年,卷(期):页码:2022,47(1):216-221
摘要:

 延长拉杆是输电线路重要的承载连接金具。结合一起500 kV输电线路延长拉杆断裂实例,通过对延长拉杆进行宏观检测、材料成分检测、室温和高温力学性能检测、不同热处理条件下的金相组织观察、断口形貌观察、通流试验等进行分析,研究引起延长拉杆过热断裂的原因。结果表明,当引流线夹接触不良或断开时,会导致延长拉杆通过大电流后长时间严重发热,使延长拉杆珠光体组织由层片状结构转变为球状结构,在导线拉力的作用下延长拉杆发生蠕变,承载面积减小,且抗拉强度大大降低,最终在导线拉力作用下发生断裂。研究结果对线路巡线和引流线夹安装修复工作有一定的指导意义。

 Extension rod is an important load-bearing connection fitting for transmission lines. Therefore, for an example of an extension rod fracture for 500 kV transmission line, the reasons causing the overheating fracture of extension rod were investigated by macroscopic observation,material composition detection, mechanical performance detection at room temperature and high temperature, metallographic structure observation under different heat treatment conditions,fracture morphology observation and current test of extension rod. The results show that the poor contact or disconnection of jumper conductor clamper causes the extension rod to generate serious heat for a long time owing to passing through large current, the pearlite structure of the extension rod changes from lamellar structure to spherical structure, and creep occurs under the action of wire tension, then the bearing area decreases and the tensile strength has a significant drop, finally fracture occurs on the extension rod under the action of wire tension. Thus, the research provides guide for the line patrolling, installation and repair work of jumper conductor clamper.

基金项目:
云南电网科技项目(YNKJXM20180175)
作者简介:
作者简介:郭新良(1971-),男,学士,高级工程师 E-mail:330965365@qq.com
参考文献:
[1]   徐健涛, 常林晶,宋铁创,等.延长拉杆的成型装置[P]. 中国:CN105057534A,2015-11-18.

Xu J T, Chang L J, Rong T C, et al. A forming device for extension tie rod[P]. China: CN105057534A, 2015-11-18.

[2]   翟少兵, 任德均,凌志祥,等.基于ANSYS Workbench拉杆的断裂原因分析和优化[J].机械制造与自动化,2017,46(4):133-135.

Zhai S B, Ren D J, Ling Z X, et al. Pull rod fracture analysis and optimization based on ANSYS Workbench[J]. Machine Building & Automation, 2017,46(4):133-135.

[3]   胡跃均, 陈麒琳,李文炎,等.乘用车抗扭拉杆断裂失效分析[J].铸造技术,2019,40(12):1340-1343.

Hu Y J, Chen Q L, Li W Y, et al. Failure analysis of passenger vehicle torque reactor[J]. Foundry Technology, 2019, 40(12):1340-1343.

[4]   黄硕, 胡军,尹菊芳.开关设备金属部件典型失效分析[J].全面腐蚀控制,2018,32(11):14-18.

Huang S, Hu J, Yin J F. Typical failure analysis for the metal parts in switching equipment[J]. Total Corrosion Control, 2018, 32(11): 14-18.

[5]   张佳蓉. 横拉杆断裂失效分析[J]. 理化检验:物理分册, 2018, 54(6):83-85.

Zhang J R. Fracture analysis of 45 steel drawing pole[J]. Physical Testing and Chemical Analysis Part A: Physical Testing, 2018, 54(6):83-85.

[6]   Jung H G, Yoo J Y, Woo J S. The microbiologically influenced corrosion behavior of CMn ship structural steel with different manufacturing processes[J]. ISIJ International, 2003, 43(10):1603-1610.

[7]   耿慧. 海水腐蚀对碳钢宏细观阻裂力学性能的影响[D].青岛:青岛理工大学, 2013.

Geng H. The Effect of Seawater Corrosion on Mechanical Properties of Macromeso Crack Resistance of Carbon Steel[D]. Qingdao: Qingdao Technological University,2013.

[8]   吴进怡, 罗琦,肖伟龙,等.海水环境中弧菌对45钢腐蚀行为及力学性能的影响[J].中国腐蚀与防护学报,2012, 32(4):343-348.

Wu J Y, Luo Q, Xiao W L, et al. Influence of vibrio on corrosion behaviors and mechanical properties of 45 steel in seawater[J]. Journal of Chinese Society for Corrosion and Protection, 2012, 32(4):343-348.

[9]   胡晓辉. 45钢拉杆断裂失效分析[J].理化检验:物理分册,2006,42(12):628-630.

Hu X H. Fracture analysis of 45 steel drawing pole[J]. Physical Testing and Chemical Analysis Part A:Physical Testing, 2006,42(12):628-630.

[10]盘玮. 关于电动机轴疲劳断裂的分析[J].金属加工:热加工, 2019,(10):51-54.

Pan W. Analysis on fatigue fracture of motor shaft[J]. MW Metal Forming, 2019,(10):51-54.

[11]徐小华. 含硼钢管状扭力梁热处理脱碳层对疲劳性能的影响[J].锻压技术,2021,46(4):235-240.

Xu X H. Influence of heat treatment decarburization layer on fatigue performance for boron steel tubular torsion beam[J].Forging & Stamping Technology,2021,46(4):235-240.

[12]刘明武, 苏辉,张晋坤.15CrMo钢珠光体球化对性能的影响[J].金属热处理,2015,40(6):41-44.

Liu M W, Su H, Zhang J K. Effect of pearlite spheriodization on properties of 15CrMo steel[J]. Heat Treatment of Metals, 2015,40(6):41-44.

[13]孙宁, 姜勇,巩建鸣.高温载荷作用下20G钢的性能及显微组织演变[J].机械工程材料,2018, 42(6):50-54, 58.

Sun N, Jiang Y, Gong J M. Property and microstructure evolution of 20G steel under high temperature loading[J]. Meterials for Mechanical Engineering, 2018, 42(6):50-54, 58.

[14]祝家祺, 谭谆礼,张敏,等.钒和铬对贝氏体车轮钢回火组织与性能的影响[J].稀有金属,2020,44(9):957-966.

Zhu J Q,Tan Z L, Zhang M, et al. Microstructure and mechanical properties of tempered bainitic railway wheel steels with addition of V and Cr [J].Chinese Journal of Rare Metals, 2020, 44(9):957-966.

[15]何朋非, 陈亮平, 杨成明,等. 火力发电厂受热面管长时超温爆管分析[J].铸造技术, 2018, 39(9):257-260.

He P F, Chen L P, Yang C M, et al. Analysis of longtime overheating explosion of heating surface tube at thermal power plant[J].Foundry Technology, 2018, 39(9):257-260.

[16]GB/T 4336—2016,碳素钢和中低合金钢   多元素含量的测定   火花放电原子发射光谱法(常规法)[S].

GB/T 4336—2016,Carbon and lowalloy steel—Determination of multielement contents—Spark discharge atomic emission spectrometric method (routine method) [S].

[17]GB/T 231.1—2018,金属材料   布氏硬度试验   第1部分:试验方法[S].


GB/T 231.1—2018,Metallic materials—Brinell hardness test—Part 1:Test method[S].

[18]GB/T 228.1—2010,金属材料   拉伸试验   第1部分:室温试验方法[S].

GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].

[19]GB/T 1172—1999,黑色金属硬度及强度换算值[S].

GB/T 1172—1999,Conversion of hardness and strength for ferrous metal[S].

[20]GB/T 228.2—2015,金属材料   拉伸试验   第2部分:高温试验方法[S].

GB/T 228.2—2015,Metallic materials—Tensile testing—Part 2:Method of test at elevated temperature[S].

[21]Bourham M, Westengen H. Stress and integrity analysis of steam superheater tubes of a high pressure boile[J].Materials Science and Technology, 2006, 10(2): 3-8.

[22]潘金平, 潘柏定,程宏辉,等.15CrMoG钢管的寿命评估新方法[J].金属热处理,2012,37(10):71-75.

Pan J P, Pan B D, Cheng H H, et al. A new life evaluation method for 15CrMoG steel tube[J]. Heat Treatment of Metals, 2012, 37(10): 71-75.

[23]Saha A, Roy H, Shukla A K. Investigation into the probable cause of failure of economizer tube of a thermal power plant[J]. Materials Research, 2010, 10(3): 187-190.

 

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9