网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
航空导管接头旋压连接装置逆向建模及工艺参数优化
英文标题:Reverse modeling and optimization of process parameters for aviation pipe joint spinning connection device
作者:王伟  王涓僖  肖军雷  杨宝林  张双杰  苏孺 
单位:河北科技大学 石家庄海山实业发展总公司 
关键词:航空导管接头 旋压连接 逆向建模 响应曲面法 填充率 
分类号:TG386;V262.3
出版年,卷(期):页码:2022,47(2):106-112
摘要:

 针对无扩口型钛合金航空导管接头的旋压连接,采用逆向技术对旋压连接装置进行建模。基于Deform-3D有限元软件,建立航空导管连接接头旋压连接的有限元模型。基于有限元分析,采用响应曲面法,以主要工艺参数为变量,以填充率为优化目标,建立完全二阶响应曲面函数模型。通过对响应曲面函数模型的寻优求解,获得合理的工艺参数组合为:芯轴自转速度为2.68 r·s-1、芯轴轴向进给速度为0.11 mm·s-1,模型预测的填充率为93.3%。采用优化参数数值模拟的填充率为93.1%,与模型预测值的相对误差为0.21%;试验制件的填充率为92.8%,与模型预测值的相对误差为0.54%,同时亦对试验制件的主要性能进行了检测。结果表明,构建的响应曲面函数模型具有良好的精度,采用优化参数后,导管内壁变形均匀,管套凹槽填充效果良好,导管连接接头性能优良。

 For the spinning connection of unflared titanium alloy aviation pipe joint, the spinning connection device was modeled by reverse technology, and the finite element model of the spinning connection for aviation pipe joint was established by finite element software Deform-3D. Then, based on finite element analysis, taking the main process parameters as variables and the filling rate as the optimization objective, a complete second-order response surface function model was established by the response surface method. And through the optimal solution of the response surface function model, the reasonable combination of process parameters was obtained as the rotation speed of mandrel of 2.68 r·s-1, the axial feeding speed of mandrel of 0.11 mm·s-1 and the filling rate predicted by the model of 93.3%. Furthermore, the filling rate of numerical simulation with the optimized parameters was 93.1%, and the relative error with the model predicted value was 0.21%. The filling rate of the experimental workpiece was 92.8%, and the relative error with the model predicted value was 0.54%. In addition, the main properties of the experimental workpiece were tested. The results show that the constructed response surface function model has high precision, after the optimized parameters are used, the inner wall of pipe is deformed uniformly, the filling effect of pipe sleeve groove is good, and the performance of pipe connection joint is excellent.

基金项目:
河北省重点研发计划项目(19251019D);2020年河北省重点研究项目(JMRH);快速扶持项目(61400020112)
作者简介:
作者简介:王伟(1986-),男,博士,讲师 ,E-mail:18631175658@163.com;通信作者:张双杰(1966-),男,博士,教授 ,E-mail:zsjzlili@163.com
参考文献:

[1]孙伟光. 无扩口导管成形连接工艺仿真与参数优化[D]. 沈阳:沈阳航空航天大学, 2019.


Sun W G. Simulation and Parameter Optimization of Flareless Tube Forming Connection Process[D].Shenyang Shenyang Aerospace University, 2019.


[2]吴为, 张荣霞, 曾元松, . 钛合金导管无扩口内径滚压连接成形技术研究[J]. 航空制造技术, 2009, 10: 68-70, 76.


Wu W, Zhang R X, Zeng Y S, et al. Research on the forming process of the flareless Internal rolling for titanium alloy tubes[J]. Aeronautical Manufacturing Technology, 2009, 10: 68-70, 76.


[3]付成勇, 肖军雷, 刘振军. 挤压式无扩口导管密封性能改进研究[J]. 航空维修与工程, 2015, 2: 68-69.


Fu C Y, Xiao J L, Liu Z J. Research on sealing property improvement of flareless tube fittings [J]. Aviation Maintenance & Engineering, 2015, 2: 68-69.


[4]王梁栋, 张东生, 吕张来. 无扩口管路连接件的制造工艺技术研究[J]. 制造业自动化, 2013, 3522: 46-48.


Wang L D, Zhang D S, Lyu Z L. Manufacturing technology on connectors of flare-less tube[J]. Manufacturing Automation, 2013, 3522: 46-48.


[5]王守财, 董宇, 孙忠志, . 航空液压系统无扩口管路件研究现状分析[J]. 液压与气动, 2020, 7: 150-157.


Wang S C, Dong Y, Sun Z Z, et al. Analysis of research status on aviation hydraulic flareless fittings[J]. Chinese Hydraulics & Pneumatics, 2020, 7: 150-157.


[6]江志强, 杨合, 詹梅, . 钛合金管材研制及其在航空领域应用的现状与前景[J]. 塑性工程学报, 2009, 164: 44-5084.


Jiang Z Q, Yang H, Zhan M, et al. State-of-the-arts and prospectives of manufacturing and application of titanium alloy tube in aviation industry[J]. Journal of Plasticity Engineering, 2009, 164: 44-5084.


[7]张荣霞, 吴为, 曾元松. 内径滚压连接三维有限元分析[J]. 塑性工程学报, 2011, 184: 85-89.


Zhang R X, Wu W, Zeng Y S. The three-dimensional finite element analysis on the internal rolling connection[J].Journal of Plasticity Engineering, 2011, 184: 85-89.


[8]张荣霞, 吴为, 曾元松. 导管无扩口内径滚压连接接头连接强度性能研究[J]. 航空制造技术, 2016, 22: 84-88.


Zhang R X, Wu W, Zeng Y S. Research on connection strength of flareless internal rolling tube joint[J]. Aeronautical Manufacturing Technology, 2016, 22: 84-88.


[9]HB 6058—2008, 挤压式无扩口管套[S].


HB 6058—2008, Sleeve, swager, flaerless tube[S].


[10]吕昕宇, 许沂, 张士宏, . 钛合金连接管件内径滚压成形的数值模拟[J]. 锻压装备与制造技术, 2004, 3: 82-84.


Lyu X Y, Xu Y, Zhang S H, et al. Simulation of connecting tube′s roller swaging for titanium aolloy [J]. China Metalforming Equipment & Manufacturing Technology, 2004, 3: 82-84.


[11]李军锋. 钛合金管材内滚压连接有限元分析与液压系统设备设计[D]. 沈阳:东北大学, 2010.


Li J F. Finite Element Analysis on the Internal Rolling Connection for Titanium Alloy Tubes and the Design of the Connection Device of Hydraulic System[D].Shenyang Northeast University, 2010.


[12]Li Z P, Lu D G, Gao X J. Optimization of mixture proportions by statistical experimental design using response surface method-A review[J]. Journal of Building Engineering, 2021, 36: 102101.


[13]HB/Z 20042—2016, 钛合金导管无扩口滚压连接试验要求[S].


HB/Z 20042—2016, Test requirement for flareless roller connection of titanium alloy tube[S].


 


[14]SAE AS85421, Fittings, tube, fluid systems, separable, beam seal, 3000/4000 psi, general specification for[S].

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9