[1]李秋鹤, 王刚, 陈礼清. 轧制方式对 SUS430 铁素体不锈钢组织和性能的影响[J]. 钢铁, 2016, 51(10): 41-47.
Li Q H, Wang G,Chen L Q. Effects of rolling schedules on microstructure and mechanical properties of SUS430 ferritic stainless steel[J]. Iron & Steel, 2016, 51(10): 41-47.
[2]高登. 铁素体不锈钢SUS430与SUS430LX的性能特点及应用[J]. 山西冶金, 2017, 40(4): 10-11.
Gao D. Properties and application of SUS430 and SUS430LX ferritic stainless steel [J]. Shanxi Metallurgy,2017, 40(4): 10-11.
[3]苏胜伟, 李纬民, 顾勇飞, 等. 小曲率板材弹塑性校正弯曲回弹分析[J]. 塑性工程学报, 2019, 26 (3): 197-202.
Su S W, Li W M, Gu Y F, et al. Springback analysis on elastic-plastic bending of smaller curvature sheet metal [J]. Journal of Plasticity Engineering, 2019, 26 (3): 197-202.
[4]孟祥瑞. 不同应力状态下金属初始屈服和硬化行为的研究[D]. 长春:吉林大学, 2019.
Meng X R. Study on Initial Yield and Hardening Behavior of Metal under Different Stress States[D].Changchun: Jilin University, 2019.
[5]Wagoner R H, Lim H, Lee M G, et al. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20.
[6]Yoshida F, Hamasaki H, Uemori T. Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect[J]. International Journal of Plasticity, 2015,75: 170-188.
[7]Sumikawa S, Ishiwatari A, Hiramoto J, et al. Improvement of springback prediction accuracy using material model considering elastoplastic anisotropy and bauschinger effect[J]. Journal of Materials Processing Technology, 2016, 230(1): 1-7.
[8]Liao J, Xue X, Lee M G, et al. On twist springback prediction of asymmetric tube in rotary draw bending with different constitutive models[J]. International Journal of Mechanical Sciences, 2014, 89: 311-322.
[9]严勇, 吴超, 胡志力, 等. 汽车铝合金覆盖件成形数值模拟的各向异性屈服准则研究[J]. 塑性工程学报, 2016, 23(2): 92-97.
Yan Y, Wu C, Hu Z L,et al. Anisotropic yield criterion for automotive aluminum panel forming numerical simulation[J].Journal of Plasticity Engineering,2016, 23(2): 92-97.
[10]夏亮亮, 陈维晋, 宋鸿武, 等. 不同屈服准则对热轧结构钢各向异性行为预测精度对比[J]. 塑性工程学报, 2019, 26 (2): 259-265.
Xia L L, Chen W J, Song H W, et al. Comparison of prediction precision of anisotropy behavior of hot-rolled structural steel used different yield criteria [J]. Journal of Plasticity Engineering, 2019, 26 (2): 259 -265.
[11]薛新, 廖娟. 屈服准则对 DC05 钢板十字拉深变形预测的评价[J]. 塑性工程学报, 2018, 25(4): 217-224.
Xue X, Liao J. Assessment of yield criterion for deformation prediction in cross-die deep drawing of DC05 steel sheet[J]. Journal of Plasticity Engineering, 2018, 25(4): 217-224.
[12]Barlat F, Lian K. Plastic behavior and stretchability of sheet metals-Part I: A yield function for orthotropic sheets under plane stress conditions[J].International Journal of Plasticity, 1989,5(1):51-66.
[13]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets-part 1:theory[J]. International Journal of Plasticity, 2003, 19(9):1297-1319.
[14]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].
GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].
[15]李健强, 张赛军, 龚小龙, 等. 基于优化方法的复杂各向异性屈服函数参数标定[J]. 塑性工程学报, 2017, 24(1): 160-167.
Li J Q, Zhang S J, Gong X L, et al. Constitutive parameter identification of complex orthotropic yield functions based on optimization method[J]. Journal of Plasticity Engineering, 2017, 24(1): 160-167.
[16]Zhu J, Huang S Y, Liu W, et al. Calibration of anisotropic yield function by introducing plane strain test instead of equi-biaxial tensile test[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2307-2313.
[17]Khalfallah A, Oliveira M C, Alves J L, et al. Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications[J]. International Journal of Mechanical Sciences, 2015, 104: 91-103.
|