网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
SUS430不锈钢自由曲面弯曲回弹的预测和试验研究
英文标题:Prediction and experimental research on bending springback for free-form surface of SUS430 stainless steel
作者:段晋昌 梁卫抗 马立安 王乾廷 
单位:福建工程学院 福建省新材料制备与成型技术重点实验室  福建省精确成型制造工程研究中心 福建省模具工程技术研究中心 
关键词:自由曲面 弯曲回弹 屈服准则 冲压速度 摩擦因数 
分类号:TG386
出版年,卷(期):页码:2022,47(2):220-228
摘要:

 金属板料弯曲中,回弹预测与控制是产品精确成形的关键。针对厚度为0.55 mm的SUS430不锈钢自由曲面弯曲回弹问题,采用Hill48、Barlat89和YLD2000-2d 3种典型的各向异性屈服准则对SUS430不锈钢板材自由曲面弯曲成形进行有限元模拟,并结合试验验证,研究了不同屈服准则对自由曲面弯曲成形回弹量的影响规律。结果表明:YLD2000-2d屈服准则的模拟结果与试验结果吻合最好,适用于SUS430不锈钢自由曲面弯曲成形的有限元模拟;Barlat89屈服准则的模拟结果与试验结果存在一定的偏差; Hill48屈服准则的模拟结果与试验结果差异最大。在选用YLD2000-2d屈服准则的基础上,研究了冲压速度与摩擦因数两种工艺参数对自由曲面弯曲成形回弹量的影响规律。在合理的工艺参数范围内,冲压速度越大,数值模拟预测的回弹量越小。

  In sheet metal bending, springback prediction and control are the key to accurate forming of product. Therefore, for the bending springback problem of free-form surface for SUS430 stainless steel with the thickness of 0.55 mm, the finite element simulation of free-form surface bending for SUS430 stainless steel sheet was carried out by three typical anisotropic yield criteria,such as Hill48, Barlat89 and YLD2000-2d, and combined with experimental verification, the influence laws of different yield criteria on springback amount of free-form surface bending were studied. The results show that the agreement between the simulation results of YLD2000-2d yield criterion and the experimental results is the best, which is suitable for the finite element simulation of free-form surface bending for SUS430 stainless steel. Furthermore, there is a certain deviation between the simulation results of Barlatt89 yield criterion and the experimental results, while the difference between the simulation results of Hill48 yield criterion and the experimental results is the biggest. Based on the selection of the YLD2000-2d yield criterion, the influence laws of the two process parameters of stamping speed and friction coefficient on the springback amount of free-form surface bending was analyzed. Within the range of reasonable process parameters, the higher the stamping speed is, the smaller the springback predicted by the numerical simulation is.

基金项目:
中央引导地方科技发展专项(2018L3001);福建省区域发展科技重大项目(2019H41019);福州市科技创新平台项目(2020-PT-145)
作者简介:
作者简介:段晋昌(1996-),男,硕士研究生,E-mail:18636730765@163.com;通信作者:王乾廷(1977-),男,博士,教授,E-mail:cocolark@163.com
参考文献:

[1]李秋鹤, 王刚, 陈礼清. 轧制方式对 SUS430 铁素体不锈钢组织和性能的影响[J]. 钢铁, 2016, 51(10): 41-47.


Li Q H, Wang GChen L Q. Effects of rolling schedules on microstructure and mechanical properties of SUS430 ferritic stainless steel[J]. Iron & Steel, 2016, 51(10): 41-47.


[2]高登. 铁素体不锈钢SUS430SUS430LX的性能特点及应用[J]. 山西冶金, 2017, 40(4): 10-11.


Gao D. Properties and application of SUS430 and SUS430LX ferritic stainless steel [J]. Shanxi Metallurgy,2017, 40(4): 10-11.


[3]苏胜伟, 李纬民, 顾勇飞, . 小曲率板材弹塑性校正弯曲回弹分析[J]. 塑性工程学报, 2019, 26 (3): 197-202.


Su S W, Li W M, Gu Y F, et al. Springback analysis on elastic-plastic bending of smaller curvature sheet metal [J]. Journal of Plasticity Engineering, 2019, 26 (3): 197-202.


[4]孟祥瑞. 不同应力状态下金属初始屈服和硬化行为的研究[D]. 长春:吉林大学, 2019.


Meng X R. Study on Initial Yield and Hardening Behavior of Metal under Different Stress States[D].Changchun Jilin University, 2019.


[5]Wagoner R H, Lim H, Lee M G, et al. Advanced issues in springback[J]. International Journal of Plasticity, 2013, 45(45): 3-20.


[6]Yoshida F, Hamasaki H, Uemori T. Modeling of anisotropic hardening of sheet metals including description of the Bauschinger effect[J]. International Journal of Plasticity, 2015,75: 170-188.


[7]Sumikawa S, Ishiwatari A, Hiramoto J, et al. Improvement of springback prediction accuracy using material model considering elastoplastic anisotropy and bauschinger effect[J]. Journal of Materials Processing Technology, 2016, 2301: 1-7.


[8]Liao J, Xue X, Lee M G, et al. On twist springback prediction of asymmetric tube in rotary draw bending with different constitutive models[J]. International Journal of Mechanical Sciences, 2014, 89: 311-322.


[9]严勇, 吴超, 胡志力, . 汽车铝合金覆盖件成形数值模拟的各向异性屈服准则研究[J]. 塑性工程学报, 2016, 23(2): 92-97.


Yan Y, Wu C, Hu Z Let al. Anisotropic yield criterion for automotive aluminum panel forming numerical simulation[J].Journal of Plasticity Engineering,2016, 23(2): 92-97.


[10]夏亮亮, 陈维晋, 宋鸿武, . 不同屈服准则对热轧结构钢各向异性行为预测精度对比[J]. 塑性工程学报, 2019, 26 (2): 259-265.


Xia L L, Chen W J, Song H W, et al. Comparison of prediction precision of anisotropy behavior of hot-rolled structural steel used different yield criteria [J]. Journal of Plasticity Engineering, 2019, 26 (2): 259 -265.


[11]薛新, 廖娟. 屈服准则对 DC05 钢板十字拉深变形预测的评价[J]. 塑性工程学报, 2018, 25(4): 217-224.


Xue X, Liao J. Assessment of yield criterion for deformation prediction in cross-die deep drawing of DC05 steel sheet[J]. Journal of Plasticity Engineering, 2018, 25(4): 217-224.


[12]Barlat F, Lian K. Plastic behavior and stretchability of sheet metals-Part I: A yield function for orthotropic sheets under plane stress conditions[J].International Journal of Plasticity, 1989,5(1):51-66.


[13]Barlat F, Brem J C, Yoon J W, et al. Plane stress yield function for aluminum alloy sheets-part 1:theory[J]. International Journal of Plasticity, 2003, 19(9):1297-1319.


[14]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010,Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].


[15]李健强, 张赛军, 龚小龙, . 基于优化方法的复杂各向异性屈服函数参数标定[J]. 塑性工程学报, 2017, 24(1): 160-167.


Li J Q, Zhang S J, Gong X L, et al. Constitutive parameter identification of complex orthotropic yield functions based on optimization method[J]. Journal of Plasticity Engineering, 2017, 24(1): 160-167.


[16]Zhu J, Huang S Y, Liu W, et al. Calibration of anisotropic yield function by introducing plane strain test instead of equi-biaxial tensile test[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(11): 2307-2313.


 


[17]Khalfallah A, Oliveira M C, Alves J L, et al. Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications[J]. International Journal of Mechanical Sciences, 2015, 104: 91-103.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9