网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
大型带筋薄壁圆管铝型材挤压成形数值模拟
英文标题:Numerical simulation on extrusion forming for large ribbed thin-walled circular tube aluminum profile
作者:王少华1 2 刘惠1 2 3 陈宗强1 2 王海龙1 2 李占强1 2 陈良3 
单位:1. 北京航空材料研究院 2. 北京市先进铝合金材料及应用工程技术研究中心 3. 山东大学 
关键词:铝型材 穿孔针挤压成形 导流室轮廓 工作带长度 材料流速 断面温度 
分类号:TG146.21;TG379
出版年,卷(期):页码:2022,47(4):181-189
摘要:

 以某大型带筋薄壁圆管铝型材为研究对象,建立了大型带筋薄壁圆管铝型材穿孔针挤压成形有限元数值模型。基于数值模拟结果,开展了导流室轮廓和工作带长度优化。研究结果表明,大型带筋薄壁圆管铝型材存在材料流速、断面温度极不均匀的问题,型材筋部的材料流速极快,最高达到了724 mm·s-1,而型材圆弧部分的流速很慢,最低仅为3.079 mm·s-1。导流室轮廓经过优化后,材料流速的控制范围为20.40~59.23 mm·s-1,断面的温度范围为500.8~518.3 ℃,显著地改善了材料流速和温度分布的效果。工作带长度经过优化后,材料流速和断面温度均匀性得到了进一步的提高,材料流速控制范围为25.76~44.40 mm·s-1,断面的温度范围为504.5~517.5 ℃,获得了较为理想的材料流速与温度分布均匀性。

 

 For a large ribbed thin-walled circular tube aluminum profile, a finite element numerical model of perforated needle extrusion forming for the large ribbed thin-walled circular tube aluminum profile was established, and based on the numerical simulation results, the induction chamber contour and working belt length were optimized. The research results show that the large ribbed thin-walled circular tube aluminum profile has the problems of extremely uneven material flow rate and cross-section temperature. The material flow rate in the rib part of profile is extremely fast with the maximum value of 724 mm·s-1, while the material flow rate in the arc part of profile is very slow with the minimum value of only 3.079 mm·s-1. After the induction chamber contour is optimized, the material flow rate is controlled within the range of 20.4-59.23 mm·s-1, and the cross-section temperature is controlled within the range of 500.8-518.3 ℃, showing the significant effect of improving the material flow rate and temperature distribution. After the working belt length is optimized, the uniformity of the material flow rate and the cross-section temperature is further improved. The material flow rate is controlled within the range of 25.76-44.40 mm·s-1, and the cross-section temperature is controlled within the range of 504.5-517.5 ℃, achieving the ideal material flow rate and uniform temperature distribution.

 
基金项目:
作者简介:
作者简介:王少华(1983-),男,博士,高级工程师 E-mail:shaohuawang1983@163.com
参考文献:

 [1]Ding Q W, Zhang D, Zuo J R, et al. The effect of grain boundary character evolution on the intergranular corrosion behavior of advanced Al-Mg-3wt% Zn alloy with Mg variation[J]. Materials Characterization, 2018, 146:47-54.


[2]Aoba T, Kobayashi M, Miura H. Effects of aging on mechanical properties and microstructure of multi-directionally forged 7075 aluminum alloy[J]. Materials Science and Engineering A, 2017, 700:220-225.

[3]Wang X D, Pan Q L, Liu L L, et al. Characterization of hot extrusion and heat treatment on mechanical properties in a spray formed ultra-high strength Al-Zn-Mg-Cu alloy[J]. Materials Characterization, 2018, 144:131-140.

[4]Lin L H, Liu Z Y, Ying P Y, et al. Improved stress corrosion cracking resistance and strength of a two-step aged Al-Zn-Mg-Cu alloy using taguchi method[J]. Journal of Materials Engineering Performance, 2015, 24(12):4870-4877.

[5]Xu C, Zheng R X, Hanada S J, et al. Effect of hot extrusion and subsequent T6 treatment on the microstructure evolution and tensile properties of an Al-6Si-2Cu-0.5Mg alloy[J]. Materials Science and Engineering A, 2018, 710:102-110.

[6]Li Y Q, Chen L, Tang J W, et al. Effects of asymmetric feeder on microstructure and mechanical properties of high strength Al-Zn-Mg alloy by hot extrusion[J]. Journal of Alloys and Compounds, 2018, 749: 293-304.

[7]Fan X H, Tang D, Fang W L, et al. Microstructure development and texture evolution of aluminum multi-port extrusion tube during the porthole die extrusion[J]. Materials Characterization, 2016, 118: 468-480.

[8]Chen L, Yuan S W, Li Z G, et al. Influence of homogenization treatment on microstructure and mechanical properties of Al-Zn-Mg alloy extruded by porthole die[J]. Materials Characterization, 2020, 161: 110148.

[9]Chen L, Chen G J, Tang J W, et al. Evolution of grain structure, micro-texture and second phase during porthole die extrusion of Al-Zn-Mg alloy[J]. Materials Characterization, 2019, 158: 109953.

[10]Chen L, Zhang J X, Zhao G Q, et al. Microstructure and mechanical properties of Mg-Al-Zn alloy extruded by porthole die with different initial billets[J]. Materials Science and Engineering A, 2018, 718: 390-397.

[11]Li F, Lin J F, Li C, et al. Optimization based on extrusion for seamless tube of super hardness aluminum alloy[J]. Journal of Central South University, 2011, 42(10):3020-3025.

[12]Liu L Y. Analysis of fixed-mandrel in extrusion of al alloy seamless tube[J]. Light Alloy Fabrication Technology, 2010, 38: 22-23.

[13]王力莉. 125 MN双动铝挤压机穿孔针的有限元分析[D]. 哈尔滨:哈尔滨理工大学, 2007.

Wang L L. Finite Element Analysis on Perforation Needle of 125 MN Double-drive Aluminum Extruder[D]. Harbin:Harbin University of Science and Technology, 2007.

[14]Gao A J, Ye P F. Optimum design of floating mandrel and dummy block for extrusion of Al alloy tube without lubricant[J]. Light Alloy Fabrication Technology, 2010, 38: 36-38.

[15]Chen Q, Pan Q L, Liu C, et al. Change of microstructure and mechanical properties of 3003 aluminum alloy seamless tube during preparing[J]. Materials for Mechanical Engineering, 2012, 36: 21-25.

[16]Yu J Q, Zhao G Q, Chen L. Investigation of interface evolution, microstructure and mechanical properties of solid-state bonding seams in hot extrusion process of aluminum alloy profiles [J]. Journal of Materials Processing Technology, 2016, 230: 153-166.

[17]Schikorra M, Donati L, Tomesani L, et al. The role of friction in the extrusion of AA6060 aluminum alloy, process analysis and monitoring [J]. Journal of Materials Processing Technology, 2007, 191: 88-92.

[18]Ma X, de Rooij M, Schipper D. Friction conditions in the bearing area of an aluminium extrusion process [J]. Wear, 2012, 278: 1-8.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9