[1]干正烈, 朱绍荷. 国外新型导管连接快卸卡箍[J]. 航空标准化与质量, 1998, (5): 45-48.
Gan Z L,Zhu S H. Foreign new type conduit connection quick release clamp [J]. Aeronautic Standardization & Quality, 1998, (5): 45-48.
[2]朱绍荷. 铝合金柔性导管连接卡箍简介[J]. 航空标准化与质量, 2004, (3): 35-37.
Zhu S H. Brief introduction of aluminum alloy flexible conduit connecting clamp [J]. Aeronautic Standardization & Quality, 2004, (3): 35-37.
[3]郑敏, 景绿路, 孙忠志. 新型不锈钢导管连接卡箍的研制[J]. 飞机设计, 2008, (3): 69-75.
Zheng M, Jing L L, Sun Z Z. Development of new coupling clamps for stainless stell pipes [J]. Aircraft Design, 2008, (3): 69-75.
[4]张振. 飞机管路系统连接卡箍可靠性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.
Zhang Z. Reliability Study on Coupling Clumps in Piping System of the Aircraft [D]. Harbin: Harbin Institute of Technology, 2016.
[5]李志广, 张健, 翟海, 等. 铝卡箍模锻优化方案 [J]. 模具技术, 2009, (1): 21-23.
Li Z G, Zhang J, Zhai H, et al. Optimized scheme for die forging process of aluminum clamp [J]. Die and Mould Technology, 2009, (1): 21-23.
[6]郑敏, 张爽, 吴超. 国内外导管连接卡箍发展动态研究 [J]. 航空标准化与质量, 2010, (4): 15-18.
Zheng M, Zhang S, Wu C. Development trends of coupling clamps for pipes at home and abroad [J]. Aeronautic Standardization & Quality, 2010, (4): 15-18.
[7]胡杰, 刘凯泉. 大型卡箍弯曲成形工艺 [J]. 锻造与冲压, 2019, (15): 39-41.
Hu J, Liu K Q. Bending forming process of heavy lamp [J]. Forging & Metalforming, 2019, (15): 39-41.
[8]Lee W S, Kao H C. High temperature deformation behaviour of Haynes 188 alloy subjected to high strain rate loading [J]. Materials Science and Engineering: A, 2014, 594: 292-301.
[9]高亚伟, 董建新, 姚志浩, 等. GH5188高温合金组织特征及冷热加工过程组织演变 [J]. 稀有金属材料与工程, 2017, (10): 2922-2928.
Gao Y W, Dong J X, Yao Z H, et al. Microstructure characteristics and microstructure evolution during hot and cold working process of GH5188 superalloy [J]. Rare Metal Materials and Engineering, 2017, (10): 2922-2928.
[10]何龙, 张冉阳, 赵刚要, 等. 基于BP神经网络的GH5188高温合金本构模型 [J]. 特种铸造及有色合金, 2021, 41 (2): 223-226.
He L, Zhang R Y, Zhao G Y, et al. Constitutive model of GH5188 superalloy based on BP neural network [J]. Special Casting & Nonferrous Alloys, 2021, 41 (2): 223-226.
[11]龚龙清. 钛合金多向锻造数值模拟及实验研究 [D]. 合肥: 合肥工业大学, 2017.
Gong L Q. Experiment and Numerical Simulation Studies on the Multi\|directional Forging of Titanium Alloy [D]. Hefei: Hefei University of Technology, 2017.
[12]Brand A J, Karhausen K, Kopp R. Microstructural simulation of nickel base alloy Incone* 718 in production of turbine discs [J]. Materials Science & Technology, 1996, 12 (11): 963-969.
[13]Cho J R, Jeong H S, Cha D J, et al. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM[J].Journal of Materials Processing Technology, 2005, 160 (1): 1-8.
[14]曲敬龙, 毕中南, 杜金辉, 等. GH4720Li合金盘锻件的等温锻造工艺优化研究 [J]. 钢铁研究学报, 2011, 23(S2): 243-246.
Qu J L, Bi Z N, Du J H, et al. Research on process optimization of isothermal forging for superalloy GH4720Li disc [J]. Journal of Iron and Steel Research, 2011, 23(S2): 243-246.
[15]付晓杰, 杜晓钟, 黄庆学. 基于ABAQUS二次开发的轧制过程组织性能预测 [J]. 太原科技大学学报, 2015, 36 (5): 362-368.
Fu X J, Du X Z, Huang Q X. Performance prediction of rolling process based on ABAQUS secondary development [J]. Journal of Taiyuan University of Science and Technology, 2015, 36 (5): 362-368.
[16]AS1895D—2016, Coupling assembly, V\|retainer, high pressure, high temperature, pneumatic tube[S].
|