网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于多场耦合仿真的时效态铝合金电磁翻孔成形
英文标题:Electromagnetic flanging of aging aluminum alloy based on multi-field coupling simulation
作者:王紫旻 赵淘 马伯洋 罗益民 李晓龙 于海平 
单位:上海航天精密机械研究所 哈尔滨工业大学 
关键词:电磁翻孔成形 2219铝合金 贴模间隙 减薄率 多场耦合仿真 
分类号:TG391
出版年,卷(期):页码:2022,47(10):191-197
摘要:
针对T6态2219铝合金壳体电磁翻孔成形,基于ANSYS/LSDYNA建立了电磁场-结构场耦合模型,通过数值模拟分析了电磁翻孔过程中板材的变形规律,研究了放电电压、预制孔直径对不同成形区域的贴模间隙和减薄率的影响。结果表明:电磁翻孔过程中产生的材料径向应变有利于抑制孔壁减薄;随着放电电压的增大,孔壁贴模间隙显著减小,但凹模圆角处的贴模间隙以及材料最大减薄率增加;随着预制孔直径的增大,孔壁贴模间隙有所减小,凹模圆角处的贴模间隙以及材料最大减薄率小幅增加。通过试验验证了模拟结果,确定放电电压和预制孔直径分别为12.75 kV和Φ99 mm时,可以得到翻边高度不小于27 mm的Φ120 mm的法向翻孔。 
 

 

For the electromagnetic flanging of 2219 aluminum alloy shell in T6 state, a coupling model of electromagnetic field and structural field was established based on ANSYS/LS-DYNA. Then, the deformation rules of plate during the electromagnetic flanging process was analyzed by numerical simulation, and the influences of discharge voltage and preformed hole diameter on the die clearance and thinning rate in different forming areas were studied. The result shows that in the electromagnetic flanging process, the radial strain of material is beneficial to restrain the thinning of hole wall. With the increasing of discharge voltage, the die clearance of hole wall decreases significantly, but both the die clearance at the die fillet and the maximum thinning rate of material increase. With the increasing of preformed hole diameter, the die clearance of hole wall decreases, and the die clearance at the die fillet and the maximum thinning rate of material increase slightly. The simulation results are verified by the test, and when the discharge voltage and the preformed hole diameter are determined to be 12.75 kV and Φ99 mm, respectively, a normal flanging hole of Φ120 mm with a flanging height of not less than 27 mm can be obtained. 

基金项目:
国家自然科学基金资助项目(52175304)
作者简介:
王紫旻(1992-),男,硕士,工程师,E-mail:onemoln2o4@163.com;通信作者:于海平(1974-),男,博士,副教授,博士生导师,E-mail:haipingy@hit.edu.cn
参考文献:

[1]于志达. 板材磁脉冲翻孔成形与变形规律研究[D]. 哈尔滨:哈尔滨工业大学,2017.

Yu Z D. Experiments and Deformation Law of Magnetic Pulse Flanging of Sheet Metal[D]. Harbin: Harbin Institute of Technology, 2017.

[2]蔡恒. 铝合金曲面板料电磁成形回弹实验研究[D]. 武汉:武汉理工大学,2012.

Cai H. Experimental Study of Electromagnetic Forming in Springback of Aluminum Alloy Curved Surface[D]. Wuhan: Wuhan University of Technology, 2012.

[3]周海洋,莫建华,李建军,等. 钛合金TC4室温下电磁胀形的工艺分析[J]. 塑性工程学报,2013203):76-81.

Zhou H Y, Mo J H, Li J J, et al. Experimental and numerical analysis of electromagnetic bulging process of titanium alloy TC4 under room temperature[J]. Journal of Plasticity Engineering, 2013, 20(3):76-81.

[4]张望,王于東,李彦涛,等. 基于双向电磁力加载的管件电磁翻边理论与实验[J]. 电工技术学报,20213614):2904-2911.

Zhang W, Wang Y D, Li Y T, et al. Theory and experiment of tube electromagnetic flanging based on bidirectional electromagnetic force loading[J]. Transactions of China Electrotechnical Society, 2021, 36(14):2904-2911.

[5]洪秀冬,黄亮,李建军,等. 大口径铝合金波纹管电磁胀形数值模拟[J]. 精密成形工程,201674):1-7.

Hong X D, Huang L, Li J J, et al. Numerical simulation of electromagnetic bulging of large diameter aluminum alloy bellows[J]. Journal of Netshape Forming Engineering, 2016, 7 (4):1-7.

[6]金淳,黄亮,李建军,等. 不同热处理状态下成形速率对2219 铝合金成形极限的影响[J].塑性工程学报,201724(1):125-132.

Jin C, Huang L, Li J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions[J]. Journal of Plasticity Engineering, 2017, 24(1):125-132.

[7]Jin Y Y, Yu H P. Enhanced formability and hardness of AA2195-T6 during electromagnetic forming[J]. Journal of Alloys and Compounds, 2022, 890:161891.

[8]孙圣朋. 钛合金板材及管件电磁成形技术的研究[D]. 沈阳:沈阳航空航天大学,2016.

Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting[D]. Shengyang: Shengyang Aerospace University, 2016.

[9]马伯洋,杨澍,李春峰,. 铝合金管等径孔电磁脉冲翻孔实验研究[J]. 锻压技术,2021464):191-198.

Ma B Y, Yang S, Li C F, et al. Experimental research on equal diameter hole flanging by electromagnetic pulse for aluminum alloy tube [J]. Forging & Stamping Technology, 2021, 46(4):191-198.

[10]王煜,张松,龚雄,等.电磁脉冲成形技术在铝合金壁板翻边孔上的应用与研究[J]. 制造业自动化,2021431):1-311.

Wang Y, Zhang S, Gong X, et al. Application and research of electromagnetic pulse forming used on flanging hole of aluminum alloy panels[J]. Manufacturing Automation, 2021, 43(1):1-3,11.

[11]柳爱群,黄西成. 高应变率变形的JohnsonCook动态本构模型参数识别方法[J]. 应用数学和力学,2014352):219-225.

Liu A Q, Huang X C. Identification of highstrainrate material parameters in dynamic JohnsonCook constitutive model[J]. Applied Mathematics and Mechanics, 2014, 35(2):219-225.

[12]黄伯云. 中国材料工程大典:第4卷  有色金属材料工程(上)[M]. 北京:化学工业出版社,2006.

Huang B Y. Chinese Material Engineering CanonVolume 4 Nonferrous Metal Material EngineeringPart I[M]. Beijing: Chemical Industry Press, 2006.

服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9