网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
同轴式电动汽车带轴头桥壳的一体式成形工艺
英文标题:Integral forming process on coaxial electric vehicles with axle head axle housing
作者:王连东1 张乾助1 2 张淑静1 宋希亮1 3 王晓迪1 4 
单位:1.燕山大学 车辆与能源学院 2.长城汽车股份有限公司 3.秦皇岛通桥科技有限公司 4.中信戴卡股份有限公司 
关键词:汽车桥壳 半轴套管 胀压成形 挤压成形 挤压量 
分类号:TG316
出版年,卷(期):页码:2022,47(12):94-102
摘要:

 针对同轴式电动汽车驱动桥,设计了带轴头桥壳的一体式成形工艺,首先选用无缝钢管进行胀压成形制得预成形管坯,再对两端圆管部分进行冷态缩径、热态挤压成形轴头及与内侧连接的台肩。建立轴头挤压成形的力学模型,分析金属的流动趋势,揭示挤压量、镦粗区加热长度对轴头、台肩成形的影响规律,并给出挤压量的近似计算公式。针对某轴荷80 kN的电动汽车桥壳,通过有限元模拟和11工程试验,揭示了挤压量s、镦粗区加热长度L对台肩根部壁厚、内腔圆角半径的影响规律,确定了s的合适范围为36~39 mmL的合适范围为34~44 mm。研究表明:设计的一体式成形工艺可行,为生产实践提供了重要依据。

 For the drive axle housing of coaxial electric vehicle, the integral forming process with axle head axle housing was designed. First, the seamless steel tube was firstly expanded and pressed to make a preformed tube blank, and then the circular tubes at both ends were cold-reduced, hot extruded to form shaft head and shoulder connected to the inner side. Furthermore, the mechanical model of shaft head extrusion forming was established, the flow trend of metal was analyzed, the influence laws of extrusion quantity and heating length of upsetting area on the formation of shaft head and shoulder were revealed, and the approximate calculation formula of extrusion quantity was given. For an axle hosing of electric vehicle with axle load of 80 kN, the influence laws of extrusion quantity s and heating length L of upsetting area on the thickness of root for the shoulder and the fillet radius of the inner cavity were revealed by the finite element analysis and 1∶1 engineering tests, and the suitable range of s and L was 36-39 mm and 34-44 mm, respectively. The results show that the designed integral forming process is feasible, and provides the important evidence for production practice

基金项目:
河北省重大科技成果转化专项资助项目(20282202Z)
作者简介:
王连东(1967-),男,博士,教授,博士生导师 E-mail:wld670509@163.com
参考文献:

 [1]张兰生,李杨,徐超,等.基于ANSYS Workbench的驱动桥壳动力学特性仿真与分析[J]. 工具技术,202155(11)64-68.


 


Zhang L S, Li Y, Xu C, et al. Simulation and analysis of dynamic characteristics of drive axle housing based on ANSYS Workbench[J]. Tool Engineering, 2021, 55(11):64-68.


 


[2]丁文敏. 汽车驱动桥壳性能仿真分析及其改进[J]. 机械设计与制造,2019 (9)269-272.


 


Ding W M. Performance simulation analysis and optimization of a truck drive axle[J]. Machinery Design & Manufacture, 2019, (9):269-272.


 


[3]熊锋, 周智超, 蒋昭杰, . 基于多学科性能分析的驱动桥壳多目标优化[J]. 汽车零部件,2021(6)1-8.


 


Xiong F, Zhou Z C, Jiang Z J, et al. Multi-objective optimization of vehicle drive axle housing based on multi-disciplinary performance analysis[J].Automobile Parts, 2021, (6):1-8.


 


[4]吕阳峰, 宋国品, 张屹, . 半轴套管的加工[J]. 金属加工: 冷加工,2021 (12)22-25.


 


Lyu Y F, Song G P, Zhang Y, et al. Production of half axle shaft tubes[J]. MW Metal Cutting, 2021, (12):22-25.


 


[5]李攀, 罗建国, 朱鑫锴, . 重型载重车半轴套管精确挤压成形过程参数优化[J]. 塑性工程学报,202027(7)79-85.


 


Li P, Luo J G, Zhu X K, et al. Parameters optimization of precise extrusion forming process for half axle shaft tubes of heavy trucks[J]. Journal of Plasticity Engineering, 2020, 27(7):79-85.


 


[6]蔡锡斌, 周林, 潘祖岚. 汽车桥壳冲压工艺及模具设计[J]. 模具工业, 2021, 47 (4)35-39.


 


Cai X B, Zhou L, Pan Z L. Design of stamping process and die for automobile axle housing[J]. Die & Mould Industry, 2021, 47(4):35-39.


 


[7]董志涛. 液压胀形汽车桥壳的试验研究与有限元模拟[D]. 秦皇岛:燕山大学, 2007.


 


Dong Z T. Test Research and Finite Element Method Simulation for Hydro-bulging Driving Axle[D]. Qinghuangdao: YanShan University, 2007.


 


[8]周友兵, 黄苏刚. 电驱动桥耐久试验方法分析[J]. 汽车工艺师, 2021,(11)51-52,55.


 


Zhou Y B, Huang S G. Analysis of durability test method for electric drive axle[J]. Modern Components, 2021,(11):51-52,55.


 


[9]李世星,周大庆.整体式铸钢桥壳铸造工艺优化[J]. 铸造设备与工艺,2021,(4) 19-22.


 


Li S X, Zhou D Q. Casting process optimization of cast steel axle housing[J]. Foundry Equipment and Technology, 2021, (4):19-22.


 


[10]吴娜,刘超,王晓迪. 小型汽车桥壳液压胀形加工方法的研究现状[J]. 塑性工程学报,202027(9)12-19.


 


Wu N, Liu C, Wang X D. Research status on hydro-bulging processing method of small automobile axle-housing[J]. Journal of Plasticity Engineering, 2020, 27(9):12-19.


 


[11]Wang X D, Wang L D, Jin M, et al. Mechanism analysis and engineering experiment of multi-directional pressing-forming pomplex large-size automobile axle housing[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(1-2): 1295-1314.


 


[12]Liu H, Wang L D, Wang X D, et al. Analysis and control of cracking and wrinkling at the end of seamless steel tube with multi-pass large deformation diameter-reducing[J]. Metals, 2021, 11(9): 1438-1438.


 


[13]崔亚平, 王连东, 高鹏飞. 液压胀形汽车桥壳强度分析[J]. 汽车工程,2006(7)692-695.


 


Cui Y P, Wang L D, Gao P F. Strength analysis on hydro-bulged automotive rear axle housing[J]. Automotive Engineering, 2006, (7):692-695.


 


[14]王连东, 丁明慧, 肖超. 胀压成形汽车桥壳性能的有限元模拟与试验[J]. 汽车工程, 2016, 38(1)127-132.


 


Wang L D, Ding M H, Xiao C. The finite element simulation and test on the performance of bulging-pressing formed vehicle axle housing[J].Automotive Engineering, 2016, 38(1):127-132.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9