网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
常刚度法和切线刚度法在金属材料数值仿真中的应用
英文标题:Application of constant stiffness method and tangent stiffness method in numerical simulation for metal materials
作者:许成 李贵 方学彬 
单位:武汉科技大学 
关键词:常刚度法 切线刚度法 UMAT子程序 FORTRAN语言 增量步 
分类号:TG389
出版年,卷(期):页码:2023,48(2):257-263
摘要:

 对常刚度法和切线刚度法两种非线性有限元计算方法进行对比研究。通过FORTRAN语言编写UMAT子程序将两种算法嵌入至ABAQUS软件中,再结合AA7075-T6铝合金试样的单轴拉伸实验及其数值模拟结果,分析单元尺寸、增量步对这两种算法的计算效率、精度及稳定性的影响。结果表明:在不同增量步和单元尺寸下,常刚度法的计算效率更高,但若以计算的精度作为标准,则切线刚度法的计算效率更高。在相同单元尺寸下,增量步越小,算法精度越高,但常刚度法的波动更大。由于增量步影响占主导,若增量步非常小,则单元尺寸对常刚度法精度的影响甚微,反之影响较大,而切线刚度法的精度受单元尺寸的影响很小。综合分析可知,切线刚度法的计算稳定性更高,为相关UMAT子程序开发人员提供了依据和参考。

 Two nonlinear finite element calculation methods of constant stiffness method and tangent stiffness method were compared and studied, and two algorithms were embedded into ABAQUS software by writing UMAT subroutine in FORTRAN language. Then, the influences of element size and incremental step on the calculation efficiency, accuracy and stability of the two algorithms were analyzed by the uniaxial tensile test and numerical simulation results of AA7075-T6 aluminum alloy samples. The results show that the calculation efficiency of the constant stiffness method is higher at different incremental steps and element sizes. However, if the calculation precision is taken as the standard, the calculation efficiency of the tangent stiffness method is higher. With the same element size, the smaller the incremental step is, the higher the precision of the algorithm is, but the greater the fluctuation of the constant stiffness method is. Since the influence of the incremental step is dominant, if the incremental step is very small, the element size has little effect on the precision of the constant stiffness method, otherwise, the effect is greater. However, the calculation precision of the tangent stiffness method is slightly affected by the element size. Thus, the comprehensive analysis shows that the stability of the tangent stiffness method is higher, which provides a basis and reference for developers of relevant UMAT subroutine.

 
基金项目:
华中科技大学材料成形与模具技术国家重点实验室开放基金资助项目(P2020-019)
作者简介:
作者简介:许成(1998-), 男, 硕士研究生,E-mail:xuchengmode@163.com;通信作者:李贵(1983-), 男, 博士, 副教授,E-mail:leegui2030@wust.edu.cn
参考文献:

[1]陈飞, 王成雨,李伟刚, . Abaqus二次开发在航空弓形结构件喷丸强化模拟中的应用[J]. 计算机辅助工程, 2020,29(2): 55-60.


Chen FWang C YLi W Get al. Application of Abaqus secondary development in shot peening strengthening of aerospace arc-shaped frame[J]. Computer Aided Engineering, 2020,29(2): 55-60.


[2]冯嵩, 郑颖人,孔亮, . 广义塑性力学多重屈服面模型隐式积分算法及其ABAQUS二次开发[J]. 岩石力学与工程学报, 2011,30(10):2019-2025.


Feng SZheng Y RKong Let al. Implicit algorithm of multi-yield-surface model based on generalized plasticity and its redevelopment in ABAQUS[J]. Chinese Journal of Rock Mechanics and Engineering2011,30(10):2019-2025.


[3]乔顺成, 吴建军,展学鹏. 各向异性屈服准则的UMAT子程序二次开发研究[J]. 锻压装备与制造技术, 201853(4): 89-97.


Qiao S CWu J JZhan X P. Study on secondary development of UMAT subroutines with anisotropic yield criterion[J]. China Metalforming Equipment & Manufacturing Technology, 201853(4): 89-97.


[4]Eslami H,Jayasinghe L B,Waldmann D. Nonlinear three-dimensional anisotropic material model for failure analysis of timber[J]. Engineering Failure Analysis, 2021,130:105764.


[5]张梦梦, 陈泽中,朱欢欢,. 基于ABAQUS二次开发的参数化型材拉弯前处理模块研究[J]. 制造业自动化, 202244(5): 82-85.


Zhang M MChen Z ZZhu H Het al. Development of the parametric pre-process module of strech bending for profile based on ABAQUS with pyhton[J]. Manufacturing Automation, 202244(5): 82-85.


[6]霍永强, 李言,崔莅沐,.ABAQUS二次开发在冷滚打成形参数化建模与仿真研究中的应用[J/OL].机械科学与技术:1-12[2022-04-12].DOI:10.13433/j.cnki.1003-8728.20220100.


Huo Y Q,Li YCui L Met al.Application of ABAQUS secondary development in parametric modeling and simulation of cold roll-beating forming[J/OL]. Mechanical Science and Technology for Aerospace Engineering:1-12[2022-04-12].DOI:10.13433/j.cnki.1003-8728.20220100.


[7]Zhang J P,Zhu C Z,Li X Q, et al. Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS[J]. Construction and Building Materials, 2017,140: 496-507.


[8]曹鹏, 冯德成,沈新普, . 基于ABAQUS平台的塑性损伤子程序开发及其稳定性研究[J]. 工程力学, 2012,29S2: 101-106.


Cao PFeng D CShen X Pet al. Evelopment of plasticity-damage model based on ABAQUS and algorithm stability analysis[J]. Engineering Mechanics, 2012,29S2: 101-106.


[9]Zhang S L,Wang Q G,Zhou W X. Implementation of the Tresca yield criterion in finite element analysis of burst capacity of pipelines[J]. International Journal of Pressure Vessels and Piping, 2019, 172: 180-187.


[10]Liu W C,Chen B K. Sheet metal anisotropy and optimal non-round blank design in high-speed multi-step forming of AA3104-H19 aluminium alloy can body[J]. The International Journal of Advanced Manufacturing Technology, 2018,95(9-12): 4265-4277.


[11]Yang Z Y,Zhao C C,Dong G J, et al. Experimental calibration of ductile fracture parameters and forming limit of AA7075-T6 sheet[J]. Journal of Materials Processing Technology, 2021,291:117044.


[12]Castillo-Méndez C,Ortiz A. Numerical simulation data and FORTRAN code to compare the stress response of two transversely isotropic hyperelastic models in ABAQUS[J]. Data in Brief, 202241: 107853.

服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9