[1]牛靖, 董俊明,何源,等.超高强钢30CrMnSiNi2A冲击韧度试验研究[J]. 机械强度,2006,28(4): 607-610.
Niu J, Dong J M, He Y, et al. Instrumented impact properties of ultra-high strength steel 30CrMnSiNi2A[J]. Journal of Mechanical Strength, 2006, 28(4): 607-610.
[2]万筱如, 许昌淦.高强度和超高强度钢[M].北京:机械工业出版,1988.
Wan X R, Xu C G. High Strength and Ultrahigh Strength Steel[M]. Beijing: China Machine Press, 1988.
[3]陈群志, 杨蕊琴,李国元,等.腐蚀对30CrMnSiNi2A 钢结构疲劳寿命的影响[J]. 装备环境工程, 2007, 4(5): 7-9,17.
Chen Q Z, Yang R Q, Li G Y, et al. Influence of corrosion on fatigue life of 30CrMnSiNi2A steel structure[J]. Equipment Environmental Engineering, 2007, 4(5): 7-9,17.
[4]Niu Q L, Ming W W, Chen M, et al. Dynamic mechanical behavior of ultra-high strength steel 30CrMnSiNi2A at high strain rates. and elevated temperatures[J]. Journal of Iron and Steel Research International, 2017, 24(7): 724-729.
[5]周义清, 张治民.30CrMnSiNi2A钢在不同应变率下的力学性能研究[J].兵器材料科学与工程,2010,33(4):46-50.
Zhou Y Q,Zhang Z M. Mechanical properties of 30CrMnSiNi2A steel under different strain rates [J]. Ordnance Material Science and Engineering,2010,33(4):46-50.
[6]花峰, 刘宪民,王春旭.化学成分对 30CrMnSiNi2A 钢力学性能的影响[J].钢铁研究学报,2003,(3):25-26,69.
Hua F,Liu X M,Wang C X. Effect of chemical composition on mechanical properties of 30CrMnSiNi2A steel [J]. Journal of Iron and Steel Research,2003,(3):25-26,69.
[7]刘天琦. 回火温度对 30CrMnSiNi2A 钢组织和性能的影响[J].特殊钢,2003,(2):16-18.
Liu T Q. Effect of tempering temperature on microstructure and properties of 30CrMnSiNi2A steel [J]. Special Steel, 2003,(2):16-18.
[8]许泽建, 李玉龙,李娜,等.加载速率对高强钢40Cr和30CrMnSiNi2A I型动态断裂韧性的影响[J].金属学报,2006,(9):965-970.
Xu Z J,Li Y L,Li N,et al. Effect of loading rate on mode Ⅰ dynamic fracture toughness of high strength steels 40Cr and 30CrMnSiNi2A[J]. Acta Metallurgica Sinica,2006,(9):966-967.
[9]武海军, 姚伟,黄风雷,等.超高强度钢30CrMnSiNi2A动态力学性能实验研究[J].北京理工大学学报,2010,30(3):258-262.
Wu H J,Yao W,Huang F L,et al. Experimental study on dynamic mechanical properties of 30CrMnSiNi2A ultra high strength steel [J]. Journal of Beijing Institute of Technology, 2010,30(3):258-262.
[10]许良, 刘鹏.超声波冲击对30CrMnSiNi2A钢疲劳性能的影响[J].金属热处理,2015,40(10):60-63.
Xu L,Liu P. Effect of ultrasonic shock on fatigue properties of 30CrMnSiNi2A steel [J]. Heat Treatment of Metals,2015,40(10):60-63.
[11]Liu J H,Wen C,Yu M,et al.Manifestations in corrosion prophase of ultra-high strength steel 30CrMnSiNi2A in sodium chloride solutions[J].Journal of Wuhan University of Technology: Materials Science Edition,2014,29(2):367-373.
[12]罗来正, 周堃,黎小锋,等.海洋大气环境与拉伸疲劳载荷耦合作用下30CrMnSiNi2A钢的腐蚀损伤行为[J].表面技术,2021,50(8):349-358
Luo L Z,Zhou K,Li X F, et al. Corrosion behavior of 30CrMnSiNi2A steel under ocean atmosphere coupled with tensile fatigue load [J]. Surface Technology, 2021,50(8):349-358.
[13]刘宪民, 花峰,刘蕤,等.热处理对30CrMnSiNi2A钢力学性能的影响[J].钢铁,2003,(1):43-47.
Liu X M,Hua F,Liu R,et al. Effect of heat treatment on mechanical properties of 30CrMnSiNi2A steel [J]. Iron & Steel, 2003,(1):43-47.
[14]张勇, 樊伟杰,张泰峰,等. 预腐蚀对30CrMnSiNi2A钢力学性能影响研究[A].2018第五届海洋材料与腐蚀防护大会[C].北京,2018.
Zhang Y,Fan W J,Zhang T F,et al. Effect of pre-corrosion on mechanical properties of 30CrMnSiNi2A steel [A]. The 5th Marine Materials and Corrosion Protection Conference[C]. Beijing, 2018.
[15]李磊, 张先锋,吴雪,等.不同硬度30CrMnSiNi2A钢的动态本构与损伤参数[J].高压物理学报,2017,31(3):239-248.
Li L,Zhang X F,Wu X,et al.Dynamic constitutive and damage parameters of 30CrMnSiNi2A steel with different hardness [J]. Chinese Journal of High Pressure Physics, 2017,31(3):239-248.
[16]郑修麟, 张铮,江春生.循环冷处理对30CrMnSiNi2A钢力学性能的影响[J].航空学报,1989,(10):562-563.
Zheng X L,Zhang Z,Jiang C S. Effect of cyclic cold treatment on mechanical properties of 30CrMnSiNi2A steel [J]. Acta Aeronautica et Astronautica Sinica,1989,(10):562-563.
[17]余万千, 郁锐,崔世堂.考虑应力三轴度影响30CrMnSiNi2A钢韧性断裂研究[J].爆炸与冲击,2021,41(3):47-54.
Yu W Q,Yu R,Cui S T. Study on ductile fracture of 30CrMnSiNi2A steel considering stress triaxiality [J]. Explosion and Shock Waves, 2021,41(3):47-54.
[18]陈跃良, 张柱柱,张勇,等.冲击载荷下点蚀损伤对30CrMnSiNi2A钢应力集中影响的数值模拟研究[J].重庆理工大学学报:自然科学,2020,34(11):69-78.
Chen Y L,Zhang Z Z,Zhang Y,et al. Numerical simulation study on the effect of pitting damage on stress concentration of 30CrMnSiNi2A steel under impact load [J]. Journal of Chongqing University of Technology: Natural Science, 2020,34(11):69-78.
[19]焦明. 30CrMnSiNi2A钢热处理过程的数值模拟及实验研究[D].长春:吉林大学,2017.
Jiao M. Numerical Simulation and Experimental Study on Heat Treatment Process of 30CrMnSiNi2A steel[D]. Changchun: Jilin University, 2017.
[20]曹建国, 王天聪,李洪波,等.基于Arrhenius改进模型的无取向电工钢高温变形本构关系[J].机械工程学报,2016,52(4):90-96,102.
Cao J G,Wang T C,Li H B,et al. High temperature deformation constitutive relation of non-oriented electrical steel based on improved Arrhenius model[J]. Journal of Mechanical Engineering,2016,52(4):90-96,102.
[21]赵慧俊, 王宝雨,刘钢,等.基于球化机理的TA15钛合金热变形统一本构模型[J]. 工程科学学报,2014,36(7):925-930.
Zhao H J,Wang B Y,Liu G,et al. Unified constitutive model for hot deformation of TA15 titanium alloy based on spheroidization mechanism[J]. Chinese Journal of Engineering,2014,36(7):925-930.
[22]Zhu F H, Xiong W, Li X F, et al.A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy[J].Rare Metals,2018,37(12):1035-1045.
[23]杨合,詹梅. 材料加工过程实验建模方法[M]. 西安:西北工业大学出版社, 2008
Yang H,Zhan M. Experimental Modeling Method of Material Processing Process[M]. Xi′an: Northwestern Polytechnical University Press, 2008
[24]Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strains,high strain rates and high temperatures[J].Engineering Fracture Mechanics,1983,21:541-547.
[25]Xiao X K,Mu Z C,Hao P,et al. Effect of the Lode parameter in predicting shear cracking of 2024-T351 aluminum alloy Taylor rods[J]. International Journal of Impact Engineering,2018,120:185-201.
|