网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
渐进冲击液压载荷下T型管的成形规律
英文标题:Forming laws of T-shaped tube under incremental impact hydraulic loads
作者:赵鑫牛1 刘建伟1 2 张文袖1 蒙振鹏1 
单位:1.桂林电子科技大学 机电工程学院  2.桂林电子科技大学 机电综合工程训练国家级实验教学示范中心 
关键词:T型管 渐进冲击液压胀形 初始内压力 补料量 支管高度 
分类号:TG394
出版年,卷(期):页码:2023,48(5):130-136
摘要:

 为了进一步提高管坯的成形性能,改善传统液压胀形依赖高压源的问题,提出了一种多通管渐进冲击液压胀形方法。以T2紫铜T型管为研究对象,应用设计的胀形装置进行了冲击液压胀形实验研究,通过不同冲击液压载荷下1道次冲击液压胀形、2道次和3道次渐进冲击液压胀形结果的对比,分析了初始内压力、补料量、渐进道次对T型管支管高度、壁厚分布、支管顶部圆角半径的影响。研究结果表明:该方法可以成形出质量较好的T型管;初始内压力对T型管支管的顶部圆角和侧壁贴模性有较大的影响;各道次的初始内压力分别为10、30和32 MPa以及补料量分别为3、3和15 mm的3道次渐进冲击液压载荷下,T型管的成形质量最好。

 In order to further improve the formability of tube blank and improve the problem of traditional hydraulic bulging technology relying on high pressure source, a incremental impact hydraulic bulging method for multi-pass tube was proposed. For T2 red copper T-shaped tube, the experimental research on incremental impact hydraulic bulging was carried out by the designed bulging device, and by comparing the results of one-pass impact hydraulic bulging, two-pass and three-pass incremental impact hydraulic bulging  under different hydraulic loads, the influences of initial internal pressure, feeding amount and incremental pass on the height, wall thickness distribution and top fillet radius of branch tube for T-shaped tube were analyzed. The research results show that this method can form T-shaped tubes with good quality. The initial internal pressure has a great influence on the top fillet radius and side wall fitting of branch tube for T-shaped tube. The forming quality of T-shaped tube is the best under the three-pass incremental impact hydraulic loads with the initial internal pressure for each pass of 10, 30 and 32 MPa and the feeding amounts of 3, 3 and 15 mm, respectively.

基金项目:
国家自然科学基金资助项目(52265044);广西自然科学基金资助项目(2022GXNSFAA035586);广西高校中青年教师科研基础能力提升计划(2021KY0201);桂林电子科技大学研究生教育创新计划项目(2023YCXS005)
作者简介:
作者简介:赵鑫牛(1997-),男,硕士研究生,E-mail:zhao_xinniu@163.com;通信作者:刘建伟(1978-),男,博士,教授,E-mail:liujianwei78988@163.com
参考文献:

[1]郭训忠, 陶杰, 王辉. 航空导管先进成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1): 12-23.


Guo X Z, Tao J, Wang H. Research progress on advanced forming technology for aviation tube[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(1): 12-23.

[2]苑世剑, 何祝斌, 刘钢. 内高压成形理论与技术的新进展[J]. 中国有色金属学报, 2011, 21(10): 2523-2533.

Yuan S J, He Z B, Liu G. New developments in theory and processes of internal high pressure forming[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2523-2533.

[3]徐勇, 李明, 夏亮亮, 等. 异形排气管多向局部加载液力成形工艺[J]. 中国机械工程, 2020, 31(22): 2763-2771.

 Xu Y, Li M, Xia L L, et al. Hydro-mechanical forming process combined with multi-directional local loading for special-shaped exhaust pipes[J]. China Mechanical Engineering, 2020, 31(22): 2763-2771.

[4]Liu G, Peng J Y, Wang X S, et al. Effects of preform on thickness distribution of hydroformed Y-shaped tube[J]. Advanced Materials Research, 2011, 189-193: 2796-2800.

[5]姬增利, 罗云华, 金俊松. Y型三通管充液挤压成形的数值模拟[J]. 热加工工艺, 2022, 51(5): 89-93.

 Ji Z L, Luo Y H, Jin J S. Numerical simulation on hydro-extruding forming of Y-shaped three-way tube[J]. Hot Working Technology, 2022, 51(5): 89-93.

[6]齐艳阳, 刘江林, 王涛, 等. 基于FEM分析轧制预变形对AZ31B镁合金热轧板材边部损伤的影响规律[J]. 稀有金属, 2022, 46(7): 873-881.

Qi Y Y, Liu J L, Wang T,et al. Edge damage of hot rolled AZ31B magnesium alloy sheets with pre-rolling based on FEM[J]. Chinese Journal of Rare Metals, 2022, 46(7): 873-881.

[7]Cui X L, Teng B G, Yuan S J. Hydroforming process of complex T-shaped tubular parts of nickel-based superalloy[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 32: 476-490.

[8]Lang L H, Wang S H, Yang C L.Investigation on the innovative impact hydroforming technology[A]. Proceedings of the 11th International Conference on Numerical Methods in Industrial Forming Processes[C]. Shenyang, 2013.

[9]Liu J W, Yao X Q, Li Y H, et al. Investigation of the generation mechanism of the internal pressure of metal thin-walled tubes based on liquid impact forming[J]. International Journal of Advanced Manufacturing Technology, 2019, 105(7-8): 3427-3436.

[10]Yao X Q, Liu J W, Liang H P, et al. Investigation of forming optimization of composite tubes based on liquid impact forming[J]. International Journal of Advanced Manufacturing Technology, 2021, 116(3-4): 1089-1102.

[11]朱书建, 李健, 王荣耀, 等. 基于响应面法的T型三通管内高压成形仿真与优化[J]. 热加工工艺, 2022, 51(9): 95-100.

 Zhu S J, Li J, Wang R Y, et al. Simulation and optimization of T-shaped tube internal high pressure forming based on response surface method[J]. Hot Working Technology, 2022, 51(9): 95-100.

[12]张坤岩, 杨连发, 陈占斌, 等. 基于K-means聚类算法的比例加载路径的优化[J]. 锻压技术, 2021, 46(11): 183-189.

Zhang K Y, Yang L F, Chen Z B, et al. Optimization on proportional loading path based on K-means clustering algorithm[J]. Forging & Stamping Technology, 2021, 46(11): 183-189.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9