网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于Dynaform的球底筒形件充液成形回弹有限元模拟
英文标题:Finite element simulation on springback during hydroforming for cylindrical parts with spherical bottom based on Dynaform
作者:张泉达1 孙福臻1 吉日格勒1 王耀2 
单位:1.中国机械科学研究总院集团有限公司 先进成形技术与装备国家重点实验室  2. 河北工业大学 机械工程学院 
关键词:球底筒形件 充液成形 回弹 减薄率 正交试验 
分类号:TG394
出版年,卷(期):页码:2023,48(5):275-281
摘要:

 基于Dynaform模拟仿真,针对球底筒形件,以液室压力、压边力、凸模与板料之间的摩擦因数和成形高度为因素开展正交试验研究,分析不同条件下零件的壁厚变化和回弹规律。结果表明:通过充液成形制备球底筒形件可以实现低拉深系数成形,拉深系数可达0.42,零件形状良好,无开裂、起皱;影响零件减薄率的主要因素为液室压力、压边力和摩擦因数,影响最大回弹量的主要因素为成形高度。最终确定优化参数组合为:液室压力为50 MPa、压边力为20 kN、摩擦因数为0.05、成形高度为50 mm,该参数组合下零件的减薄率低、回弹量小,满足设计要求。相较于平底筒形件,在参数相同的条件下,两者的回弹量相近,但球底筒形件的厚度分布更均匀,有利于材料的充分利用。

 Based on the simulation by Dynaform, for the cylindrical parts with spherical bottom, taking liquid chamber pressure, blank holder force, friction coefficient between punch and blank and forming height as the factors, the wall thickness change and the springback rule of parts under different conditions were studied by the orthogonal test. The results show that the cylindrical parts  with spherical bottom by hydroforming can achieve the forming at low tensile coefficient, which can reach 0.42, and the parts get good shape without cracking and wrinkling. The main factors affecting the thinning rate of parts are liquid chamber pressure, blank holder force and friction coefficient, and the main factor affecting the maximum amount of springback is forming height. Finally, the optimization combination of parameters is determined as the liquid chamber pressure of 50 MPa, the blank holder force of 20 kN, the friction coefficient of 0.05 and the forming height of 50 mm. Under this parameter combination, the thinning rate of parts is low and the amount of springback is small which can meet the design requirements. Compared with the cylindrical parts with flat bottom, under the same parameter conditions, the two have similar amounts of springback, but the thickness distribution of cylindrical parts with spherical bottom is more uniform, which is conducive to the full use of materials.

基金项目:
中国机械科学研究总院集团有限公司技术发展基金(2021110032020656)
作者简介:
作者简介:张泉达(1986-),男,博士,高级工程师,E-mail:zhangquandadgu@163.com;通信作者:吉日格勒(1991-),男,硕士,助理工程师,E-mail:jirigele678@163.com
参考文献:

[1]臧其其, 闫华军, 张双杰, 等. 基于Dynaform的铝合金汽车地板梁成形分析及工艺参数优化[J]. 塑性工程学报, 2019, 26(2):125-131.


Zang Q Q, Yan H J, Zhang S J, et al. Forming analysis and process parameters optimization for automobile aluminum alloy floorbeam based on Dynaform[J]. Journal of Plasticity Engineering, 2019, 26 (2): 125-131.

[2]黄丽容, 张池, 刘文, 等. 大膨胀率薄壁管复合内高压成形工艺研究[J]. 塑性工程学报, 2020, 27(8): 52-59.

Huang L R, Zhang C, Liu W, et al. Composite internal high pressure forming process of thin-walled tube with large expansion ratio[J]. Journal of Plasticity Engineering, 2020, 27 (8): 52-59.

[3]顾勇, 袁鸿斌, 吴小涛,等. 板料液压成形的研究现状[J]. 机械制造, 2018, 56(8):60-63.

Gu Y, Yuan H B, Wu X T, et al. Research status of sheet metal hydroforming[J].Mechanical Engineering, 2018, 56(8):60-63.

[4]凡晓波,王旭刚,陈险烁,等. 铝合金管材超低温介质压力胀形行为[J]. 锻压技术,2021,46(4):1-6.

Fan X B,Wang X G,Chen X S,et al. Behavior of ultra-low temperature medium bulging for aluminum alloy tube [J]. Forging & Stamping Technology,2021,46(4):1-6.

[5]李晓冬, 徐雪峰, 华如雨, 等. 5052铝合金T型三通管内高压成形规律研究[J]. 塑性工程学报, 2021, 28(3):41-49.

Li X D, Xu X F, Hua R Y, et al.Research on internal high pressure forming laws of 5052 aluminum alloy T-shape tube[J]. Journal of Plasticity Engineering, 2021, 28(3): 41-49.

[6]刘伟, 胡蓝, 郝永刚,等. 高强铝合金复杂曲面件液压成形变形均匀性调控[J]. 塑性工程学报, 2019, 26(2):43-49.

Liu W, Hu L, Hao Y G, et al. Deformation uniformity control of complex curved part during hydroforming process with high strength aluminumalloy[J]. Journal of Plasticity Engineering, 2019, 26 (2): 43-49.

[7]张三敏, 郎利辉, 矫志辉,等. 汽车结构钢大曲率变截面管件充液成形工艺优化[J]. 锻压技术,2021,46(4):96-100.

Zhang S M,Lang L H,Jiao Z H,et al. Optimization on hydroforming process of large-curvature variable-section pipe for automo-bile structural steel [J]. Forging & Stamping Technology,2021,46(4):96-100.

[8]Liu W, Chen Y Z, Yuan S J. Mechanism analysis on thicknessdistribution of aluminum alloy hemispherical shells in double-sided sheet hydroforming[J]. International Journal of Advanced Manu-facturing Technology, 2017, 89(5-8):2011-2020.

[9]冯瑶,蔡玉俊,郭志远,等. 5182铝合金引擎盖内板充液成形实验工艺参数优化[J]. 锻压技术,2021,46(11):107-112.

Feng Y,Cai Y J,Guo Z Y,et al. Optimization on experimental process parameters in hydroforming of hood inner panel for 5182 aluminum alloy[J]. Forging & Stamping Technology,2021,46(11):107-112.

[10]杨声伟, 于弘喆, 张淳,等. 充液成形技术在航天火箭整流罩成形中的应用[J]. 航空制造技术, 2020, 63(1):107-112.

Yang S W, Yu H Z, Zhang C,et al. Application of hydroforming technology in aerospace rocket fairing forming[J]. Aeronautical Manufacturing Technology,2020, 63(1):107-112.

[11]毕海娟, 田恕, 李继光,等. 椭球瓜瓣构件充液成形模具设计及优化[J]. 锻压技术,2021,46(6):167-173.

Bi H J,Tian S,Li J G,et al. Design and optimization on hydroforming die for ellipsoidal melon petal component[J]. Forging & Stamping Technology,2021,46(6):167-173.

[12]李晓光, 矫志辉, 赵文华,等. 外凸型变曲率内锥体深腔曲面高温合金构件充液成形工艺优化[J]. 锻压技术,2021, 46(8): 117-122.

Li X G, Jiao Z H, Zhao W H, et al. Optimization on superalloy component hydroforming process for deep-cavity curved surface of convex-shaped inner cone with variable curvature[J]. Forging & Stamping Technology, 2021,46(8):117-122.

[13]曾一畔, 徐勇, 夏亮亮,等. 加载路径对铝合金航空复杂薄壁构件主动式充液成形性能的影响[J]. 塑性工程学报, 2019, 26(5):180-189.

Zeng Y P,Xu Y,Xia L L,et al. Influence of loading paths on formability of aviation complex thin-walled component of aluminum alloy in hydroforming[J]. Journal of Plasticity Engineering, 2019, 26 (5): 180-189.

[14]周国伟, 李大永, 彭颖红. 7075-T6高强度铝合金温热条件下的拉深成形性能[J]. 上海交通大学学报, 2012, 46(9): 1482-1486.

Zhou G W, Li D Y, Peng Y H. Deep drawability of 7075-T6 high strength aluminum alloy at warm condition[J]. Journal of Shanghai Jiao Tong University, 2012, 46(9): 1482-1486.

[15]李奎, 邱超斌, 郭全庆,等. 大法兰平底筒形件充液成形壁厚规律研究[A]. 中国航空学会. 2019年(第四届)中国航空科学技术大会[C].北京, 2019.

Li K, Qiu C B, Guo Q Q, et al. Inverstigation on hydroforming of wall thickness distribution rule of flat bottom cylidrical part[A]. Chinese Society of Aeronautics and Astronautics. 2019 (4th) China Aeronautical Science and Technology Conference[C]. Beijing, 2019.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9