网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于修正Johnson-Cook本构模型的2209双相不锈钢高温流变行为
英文标题:High temperature rheological behavior of 2209 duplex stainless steel based on modified Johnson-Cook constructive model
作者:张芳萍 成鑫尧 曹宇 张宏政 王超 
单位:(太原科技大学 重型机械教育部工程研究中心 山西 太原 030024) 
关键词:2209双相不锈钢 高温流变行为 Johnson-Cook本构模型 应变速率 变形温度 
分类号:TG156.1
出版年,卷(期):页码:2023,48(6):223-230
摘要:

 利用Gleeble-3800热模拟实验机,对2209双相不锈钢进行了单向热压缩实验,应变速率为0.01~10 s-1,变形温度为950~1150 ℃。研究了2209双相不锈钢的高温流变行为,分析了应变速率和变形温度对双相不锈钢两相关系的影响,并对2209双相不锈钢在宽应变速率和宽变形温度下的Johnson-Cook本构模型进行了修正。结果表明:变形温度与应变速率对2209双相不锈钢的流动应力有显著影响,修正后的Johnson-Cook本构模型能较为精确地预测其高温流变行为,预测值与实验值的相关度为0.99817,平均相对误差为4.026%。

  The unidirectional thermal compression expriment of 2209 duplex stainless steel was conducted at the strain rate of 0.01-10 s-1 and the deformation temperature of 950-1150 ℃ by thermal simulation machine Gleeble-3800, and the high temperature rheological behavior of 2209 duplex stainless steel was studied. Then, the influences of strain rate and deformation temperature on the two phases relationship of 2209 duplex stainless steel were analyzed, and the Johnson-Cook constitutive model of 2209 duplex stainless steel at wide strain rate and wide deformation temperature was modified. The results show that the deformation temperature and strain rate have a significant effect on the rheological stress of 2209 duplex stainless steel. The modified Johnson-Cook constitutive model can accurately predict its high temperature rheological behavior. The correlation between the predicted and experimental values is 0.99817, and the average relative error is 4.026%.

基金项目:
山西省先进钢铁材料重点科技创新平台项目(201805D115061-2)
作者简介:
张芳萍(1971-),女,硕士,副教授
参考文献:

 
[1]魏振宇,吴玖.双相不锈钢论文集
[M].北京:冶金工业出版社,2000.


Wei Z Y, Wu J. Duplex Stainless Steel Papers
[M].Beijing:Metallurgical Industry Press,2000.


[2]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[J]. Engineering Fracture Mechanics,1983, 21:541-548.


[3]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel
[J]. Materials Science & Engineering:A,2010, 527(26):6980-6986.


[4]Lin Y C,Chen M S,Zhang J.Modeling of flow stress of 42CrMo steel under hot compression
[J]. Materials Science and Engineering: A,2009, 499(1-2):88-92.


[5]李润霞,张磊,刘兰吉,等.Al-17.5Si-4Cu-0.5Mg合金热变形行为及其加工图
[J].航空材料学报,2015,35(1):25-32.

Li R X, Zhang L, Liu L J, et al. Hot deformation behavior and processing maps of Al-17.5Si-4Cu-0.5Mg alloys
[J]. Journal of Aeronautical Materials,2015, 35(1):25-32.


[6]王志蒙,王宇璞,尹起,等. DP780 双相钢动态再结晶动力学研究
[J]. 塑性工程学报,2018,25(6):194-201.

Wang Z M, Wang Y P, Yin Q, et al. Dynamic recrystallization kinetics of DP780 dual phase steel
[J]. Journal of Plasticity Engineering,2018, 25(6):194-201.


[7]吴天海,王建军,张影,等.热压缩过程中2205双相不锈钢的组织演变和软化机制
[J].材料研究学报,2019,33(4):254-260.

Wu T H, Wang J J, Zhang Y, et al, Microstructural evolution and softening mechanism of 2205 duplex stainless steel during hot compression
[J]. Chinese Journal of Materials Research,2019,33(4):254-260.


[8]Zhang P, Yi C, Chen G, et al.Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy
[J].Metals,2016,6(7):161-167.


[9]陈雷,王龙妹,杜晓建,等.2205双相不锈钢的高温变形行为
[J].金属学报,2010,46(1):52-56.

Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel
[J].Acta Metallurgica Sinica,2010,46(1):52-56.


[10]肖翔,刘国权,胡本芙,等.12Cr3WV低活性F/M钢的高温热变形行为
[J].材料科学与工艺,2013,21(5):57-64.

Xiao X, Liu G Q, Hu B F, et al. Hot deformation behavior of 12Cr3WV reducedactivation ferrite/martensite steel
[J].Materials Science and Technology,2013,21(5):57-64.


[11]Bing S A, Tza B, Lin S A. Flow behavior and dynamic recrystallization of a power metallurgy nickel-based superalloy during hot compression in (γ+γ)-phase region
[J]. Journal of Alloys and Compounds,2021,891:161944.


[12]Gambirasio L, Rizzi E. An enhanced Johnson-Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow
[J]. Computational Materials Science,2016, 113:231-265.


[13]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel
[J]. Computational Materials Science,2012, 54:48-55.


[14]Daoud M, Chatelain J F, Bouzid A. Effect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining process
[J]. International Journal of Mechanical Sciences,2017, 122:392-404.


[15]杨扬,曾毅,汪冰峰.基于Johnson-Cook模型的TC16钛合金动态本构关系
[J].中国有色金属学报,2008,108(3):505-510.

Yang Y, Zeng Y, Wang B F. Johnson-Cook dynamic constitutive relationship for TC16 titanium alloy
[J]. The Chinese Journal of Nonferrous Metals,2008,108(3):505-510.


[16]Milani A S, Dabboussi W, Nemes J A, et al. An improved multi-objective identification of Johnson-Cook material parameters
[J]. International Journal of Impact Engineering, 2009, 36(2):294-302.


[17]李建光,施琪,曹结东.Johnson-Cook本构方程的参数标定
[J].兰州理工大学学报,2012,38(2):164-167.

Li J G, Shi Q, Cao J D. Parameters calibration for Johnson-Cook constitutive equation
[J].Journal of Lanzhou University of Technology,2012,38(2):164-167.


[18]Notta-Cuvier D, Langrand B, Markiewicz E, et al. Identification of Johnson-Cook′s viscoplastic model parameters using the virtual fields method: application to titanium alloy Ti6Al4V
[J]. Strain,2013,49(1):159-163.


[19]柳爱群, 黄西成. 高应变速率变形的Johnson-Cook动态本构模型参数识别方法
[J]. 应用数学和力学,2014,35(2):219-225.

Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook cvonstitutive model
[J]. Applied Mathematics and Mechanics,2014,35(2):219-225.


[20]Kang W J, Cho S S, Huh H, et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation
[J]. International Journal of Vehicle Design,1999, 21(4/5):424-435.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9