[1]魏振宇,吴玖.双相不锈钢论文集 [M].北京:冶金工业出版社,2000.
Wei Z Y, Wu J. Duplex Stainless Steel Papers [M].Beijing:Metallurgical Industry Press,2000.
[2]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [J]. Engineering Fracture Mechanics,1983, 21:541-548.
[3]Lin Y C, Chen X M, Liu G. A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel [J]. Materials Science & Engineering:A,2010, 527(26):6980-6986.
[4]Lin Y C,Chen M S,Zhang J.Modeling of flow stress of 42CrMo steel under hot compression [J]. Materials Science and Engineering: A,2009, 499(1-2):88-92.
[5]李润霞,张磊,刘兰吉,等.Al-17.5Si-4Cu-0.5Mg合金热变形行为及其加工图 [J].航空材料学报,2015,35(1):25-32.
Li R X, Zhang L, Liu L J, et al. Hot deformation behavior and processing maps of Al-17.5Si-4Cu-0.5Mg alloys [J]. Journal of Aeronautical Materials,2015, 35(1):25-32.
[6]王志蒙,王宇璞,尹起,等. DP780 双相钢动态再结晶动力学研究 [J]. 塑性工程学报,2018,25(6):194-201.
Wang Z M, Wang Y P, Yin Q, et al. Dynamic recrystallization kinetics of DP780 dual phase steel [J]. Journal of Plasticity Engineering,2018, 25(6):194-201.
[7]吴天海,王建军,张影,等.热压缩过程中2205双相不锈钢的组织演变和软化机制 [J].材料研究学报,2019,33(4):254-260.
Wu T H, Wang J J, Zhang Y, et al, Microstructural evolution and softening mechanism of 2205 duplex stainless steel during hot compression [J]. Chinese Journal of Materials Research,2019,33(4):254-260.
[8]Zhang P, Yi C, Chen G, et al.Constitutive model based on dynamic recrystallization behavior during thermal deformation of a nickel-based superalloy [J].Metals,2016,6(7):161-167.
[9]陈雷,王龙妹,杜晓建,等.2205双相不锈钢的高温变形行为 [J].金属学报,2010,46(1):52-56.
Chen L, Wang L M, Du X J, et al. Hot deformation behavior of 2205 duplex stainless steel [J].Acta Metallurgica Sinica,2010,46(1):52-56.
[10]肖翔,刘国权,胡本芙,等.12Cr3WV低活性F/M钢的高温热变形行为 [J].材料科学与工艺,2013,21(5):57-64.
Xiao X, Liu G Q, Hu B F, et al. Hot deformation behavior of 12Cr3WV reducedactivation ferrite/martensite steel [J].Materials Science and Technology,2013,21(5):57-64.
[11]Bing S A, Tza B, Lin S A. Flow behavior and dynamic recrystallization of a power metallurgy nickel-based superalloy during hot compression in (γ+γ)-phase region [J]. Journal of Alloys and Compounds,2021,891:161944.
[12]Gambirasio L, Rizzi E. An enhanced Johnson-Cook strength model for splitting strain rate and temperature effects on lower yield stress and plastic flow [J]. Computational Materials Science,2016, 113:231-265.
[13]Prawoto Y, Fanone M, Shahedi S, et al. Computational approach using Johnson-Cook model on dual phase steel [J]. Computational Materials Science,2012, 54:48-55.
[14]Daoud M, Chatelain J F, Bouzid A. Effect of rake angle-based Johnson-Cook material constants on the prediction of residual stresses and temperatures induced during Al2024-T3 machining process [J]. International Journal of Mechanical Sciences,2017, 122:392-404.
[15]杨扬,曾毅,汪冰峰.基于Johnson-Cook模型的TC16钛合金动态本构关系 [J].中国有色金属学报,2008,108(3):505-510.
Yang Y, Zeng Y, Wang B F. Johnson-Cook dynamic constitutive relationship for TC16 titanium alloy [J]. The Chinese Journal of Nonferrous Metals,2008,108(3):505-510.
[16]Milani A S, Dabboussi W, Nemes J A, et al. An improved multi-objective identification of Johnson-Cook material parameters [J]. International Journal of Impact Engineering, 2009, 36(2):294-302.
[17]李建光,施琪,曹结东.Johnson-Cook本构方程的参数标定 [J].兰州理工大学学报,2012,38(2):164-167.
Li J G, Shi Q, Cao J D. Parameters calibration for Johnson-Cook constitutive equation [J].Journal of Lanzhou University of Technology,2012,38(2):164-167.
[18]Notta-Cuvier D, Langrand B, Markiewicz E, et al. Identification of Johnson-Cook′s viscoplastic model parameters using the virtual fields method: application to titanium alloy Ti6Al4V [J]. Strain,2013,49(1):159-163.
[19]柳爱群, 黄西成. 高应变速率变形的Johnson-Cook动态本构模型参数识别方法 [J]. 应用数学和力学,2014,35(2):219-225.
Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook cvonstitutive model [J]. Applied Mathematics and Mechanics,2014,35(2):219-225.
[20]Kang W J, Cho S S, Huh H, et al. Modified Johnson-Cook model for vehicle body crashworthiness simulation [J]. International Journal of Vehicle Design,1999, 21(4/5):424-435.
|