[1]Otto F, Dlouhy A, Somsen C. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy [J]. Acta Materialia, 2013, 61(15): 5743-5755.
[2]Chen M R, Lin S J, Yeh J W, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy [J]. Metallurgical and Materials Transactions A, 2006, 37(5): 1363-1369.
[3]Yan Y, Gao W, Wang X, et al. Microstructures and compressive properties of AlxCoCrFeNi high entropy alloys prepared by arc melting and directional solidification [J]. Materials Research Express, 2022, 9(1): 016510.
[4]Dbm A, Onsa B. A critical review of high entropy alloys and related concepts [J]. Acta Materialia, 2017, 122: 448-511.
[5]Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227-230.
[6]Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.
[7]Yeh J W. Recent progress in high-entropy alloys [J]. European Journal of Control, 2006, 31(6): 633-648.
[8]Yuji I, Blazej G, Fritz K. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys [J]. Materials Characterization, 2019, 147: 464-511.
[9]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [A]. Proceedings of the 7th International Symposium on Ballistics [C]. Netherlands, 1983.
[10]Sung J H, Kim J H, Wagoner R. A plastic constitutive equation incorporating strain, strain-rate, and temperature [J]. International Journal of Plasticity, 2010, 26(12): 1746-1771.
[11]Samantaray D, Mandal S, Bhaduri A. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568-576.
[12]Samantaray D, Mandal S, Bhaduri A. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel [J]. Materials & Design, 2010, 31(2): 981-984.
[13]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.
[14]Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel [J]. Materials Science and Engineering: A, 2009, 526(1): 1-6.
[15]Lin Y, Chen M S, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate [J]. Mechanics Research Communications, 2008, 35(3): 142-150.
[16]宋繁策, 李鉴霖, 韩金科, 等. AlFeCoNiMo0.2高熵合金热变形行为及热加工图 [J]. 精密成形工程, 2021, 13(6): 7-12.
Song F C, Li J L, Han J K, et al. Hot deformation behavior and processing map of AlFeCoNiMo0.2 high-entropy alloy [J]. Journal of Netshape Forming Engineering, 2021, 13(6): 7-12.
[17]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立 [J]. 材料导报, 2021, 35(S1): 6-11.
Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy [J]. Materials Reports, 2021, 35(S1): 6-11.
[18]彭需发, 李慧中, 梁霄鹏, 等. FeCoCrNiC0.05高熵合金的高温变形行为及动态软化机制 [J]. 湖南有色金属, 2020,(5): 54-59.
Peng X F, Li H Z, Liang X P, et al. FeCoCrNiC0.05 high-entropy alloy high temperature deformation behavior and dynamic softening mechanism PEN [J]. Hunan Nonferrous Metals, 2020, (5): 54-59.
[19]Eleti R R, Bhattacharjee T, Zhao L, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy [J]. Materials Chemistry and Physics, 2017, 210: 176-186.
[20]Ahmed M Z, Chadha K, Reddy S R, et al. Influence of process parameters on microstructure evolution during hot deformation of a eutectic high-entropy alloy (EHEA) [J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6406-6420.
[21]Zhang M, Hou J X, Yang H J, et al. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys [J]. International Journal of Mineral Metallurgy and Materials, 2020, 27(10): 6-12.
|