网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于DMNR模型的AlCoCrFeNi0.6高熵合金本构方程
英文标题:Constitutive equation on AlCoCrFeNi0.6 high entropy alloy based on double multiple nonlinear regression model
作者:刘太盈1 韩莹莹2 王磊3 
单位:(1. 北京星航机电装备有限公司 北京 100074 2. 北京动力机械研究所 北京 100072  3. 浙江省杭州市正才控股集团有限公司 浙江 杭州 310000) 
关键词:高熵合金 流变特征 本构方程 DMNR模型 流动应力 
分类号:TG142.1
出版年,卷(期):页码:2023,48(6):258-264
摘要:

 采用Gleeble-3500热压缩模拟机对AlCoCrFeNi0.6高熵合金进行了热压缩试验,试验温度为1223、1273、1323和1373 K,应变速率为0.001、0.01、0.1和1 s-1,探究了AlCoCrFeNi0.6高熵合金在高温热压缩时,应力σ与应变ε、温度T和应变速率ε·之间的关系,并建立了基于二次非线性回归(DMNR)模型的本构方程。研究发现:在同一应变速率下,随着温度的升高,流动应力呈现下降趋势,在同一温度条件下,随着应变速率的升高,流动应力呈升高趋势,AlCoCrFeNi0.6高熵合金具有明显的应变速率强化和高温软化现象。基于DMNR模型回归建立了AlCoCrFeNi0.6高熵合金的高温本构方程,通过对比分析发现所建立的模型具有较好的预测性能,平均相对误差为9.94%。

 The hot compression test of AlCoCrFeNi0.6 high entropy alloy was carried out by hot compression machinery Gleeble-3500 at test temperatures of 1223, 1273, 1323 and 1373 K and strain rates of 0.001, 0.01, 0.1 and 1 s-1, and the relationship between flow stress σ and strain ε, temperature T and strain rate ε·  was explored. Then, the constitutive equation based on the double multipe nonlinear regression (DMNR) model was established. The results show that under the same strain rate, with the increasing of temperature, the flow stress shows a downward trend, and under the same temperature condition, the flow stress shows an increases trend with the increasing of strain rate. Therefore,AlCoCrFeNi0.6  high entropy alloy has obvious strain rate strengthening and high temperature softening phenomenon. Based on double multiple nonlinear regression (DMNR) model, the high-temperature constitutive equation of AlCoCrFeNi0.6 high entropy alloy  is established. Through comparative analysis, it is found that the established model has good prediction performance, and the average relative error is 9.94%.

基金项目:
国防科技173计划技术领域基金(2021-JCJQ-JJ-0197)
作者简介:
刘太盈(1987-),男,硕士,工程师
参考文献:

 
[1]Otto F, Dlouhy A, Somsen C. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy
[J]. Acta Materialia, 2013, 61(15): 5743-5755.



[2]Chen M R, Lin S J, Yeh J W, et al. Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy
[J]. Metallurgical and Materials Transactions A, 2006, 37(5): 1363-1369.


[3]Yan Y, Gao W, Wang X, et al. Microstructures and compressive properties of AlxCoCrFeNi high entropy alloys prepared by arc melting and directional solidification
[J]. Materials Research Express, 2022, 9(1): 016510.


[4]Dbm A, Onsa B. A critical review of high entropy alloys and related concepts
[J]. Acta Materialia, 2017, 122: 448-511.


[5]Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
[J]. Nature, 2016, 534(7606): 227-230.


[6]Cantor B, Chang I, Knight P, et al. Microstructural development in equiatomic multicomponent alloys
[J]. Materials Science and Engineering: A, 2004, 375-377: 213-218.


[7]Yeh J W. Recent progress in high-entropy alloys
[J]. European Journal of Control, 2006, 31(6): 633-648.


[8]Yuji I, Blazej G, Fritz K. Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys
[J]. Materials Characterization, 2019, 147: 464-511.


[9]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures
[A]. Proceedings of the 7th International Symposium on Ballistics
[C]. Netherlands, 1983.


[10]Sung J H, Kim J H, Wagoner R. A plastic constitutive equation incorporating strain, strain-rate, and temperature
[J]. International Journal of Plasticity, 2010, 26(12): 1746-1771.


[11]Samantaray D, Mandal S, Bhaduri A. A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel
[J]. Computational Materials Science, 2009, 47(2): 568-576.


[12]Samantaray D, Mandal S, Bhaduri A. Constitutive analysis to predict high-temperature flow stress in modified 9Cr-1Mo (P91) steel
[J]. Materials & Design, 2010, 31(2): 981-984.


[13]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations
[J]. Journal of Applied Physics, 1987, 61(5): 1816-1825.


[14]Samantaray D, Mandal S, Borah U, et al. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel
[J]. Materials Science and Engineering: A, 2009, 526(1): 1-6.


[15]Lin Y, Chen M S, Zhong J. Prediction of 42CrMo steel flow stress at high temperature and strain rate
[J]. Mechanics Research Communications, 2008, 35(3): 142-150.


[16]宋繁策, 李鉴霖, 韩金科, 等. AlFeCoNiMo0.2高熵合金热变形行为及热加工图
[J]. 精密成形工程, 2021, 13(6): 7-12.

Song F C, Li J L, Han J K, et al. Hot deformation behavior and processing map of AlFeCoNiMo0.2 high-entropy alloy
[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 7-12.


[17]梅金娜, 薛飞, 吴天栋, 等. FeCrNiMn高熵合金本构方程的建立
[J]. 材料导报, 2021, 35(S1): 6-11.

Mei J N, Xue F, Wu T D, et al. Establishment of constitutive equation of FeCrNiMn high entropy alloy
[J]. Materials Reports, 2021, 35(S1): 6-11. 


[18]彭需发, 李慧中, 梁霄鹏, 等. FeCoCrNiC0.05高熵合金的高温变形行为及动态软化机制
[J]. 湖南有色金属, 2020,(5): 54-59.

Peng X F, Li H Z, Liang X P, et al. FeCoCrNiC0.05 high-entropy alloy high temperature deformation behavior and dynamic softening mechanism PEN
[J]. Hunan Nonferrous Metals, 2020, (5): 54-59.


[19]Eleti R R, Bhattacharjee T, Zhao L, et al. Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy
[J]. Materials Chemistry and Physics, 2017, 210: 176-186.


[20]Ahmed M Z, Chadha K, Reddy S R, et al. Influence of process parameters on microstructure evolution during hot deformation of a eutectic high-entropy alloy (EHEA)
[J]. Metallurgical and Materials Transactions A, 2020, 51(12): 6406-6420.


[21]Zhang M, Hou J X, Yang H J, et al. Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys
[J]. International Journal of Mineral Metallurgy and Materials, 2020, 27(10): 6-12.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9