网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
液压缸驱动下叶片辊轧机传动系统动力学特性
英文标题:Dynamic characteristics of blade rolling mill transmission system driven by hydraulic cylinder
作者:张瑜1 2 侯绿原1 赵飞1 
单位:1.安阳工学院 机械工程学院 2. 安阳工学院 安阳市先进航空材料与加工技术重点实验室 
关键词:辊轧机 叶片 液压缸 传动系统 啮合刚度 
分类号:TG339
出版年,卷(期):页码:2023,48(9):156-167
摘要:

 为了分析液压缸非线性动力学特性对叶片辊轧机传动系统振动的影响,建立了液压缸与叶片辊轧机传动系统耦合振动模型,考虑载荷作用下齿条基体产生弹性变形,推导出上轧辊二级齿轮-齿条时变啮合刚度,采用Runge-Kutta法求得了系统动力学特性,研究了无杆腔的初始有效长度、齿轮-齿条啮合刚度等参数对辊轧机传动系统的动力学特性的影响。分析表明,无杆腔的初始有效长度的增加,使系统逐步由周期运动进入倍周期运动,最终转为混沌运动;此外,齿轮-齿条啮合刚度引起上轧辊一级齿轮以及上轧辊二级齿轮-齿条的振动位移在初始时刻产生一定的波动,而对下轧辊一级齿轮的运动状态影响较小。

 In order to analyze the influence of nonlinear dynamic characteristics for hydraulic cylinders on the vibration of transmission system for blade rolling mill, the coupled vibration model of hydraulic cylinder and transmission system for blade rolling mill was established. Considering the elastic deformation of rack matrix under load effect, the time-varying meshing stiffness of secondary gear-rack for upper roll was derived. The Runge-Kutta method was used to obtain the dynamic characteristics of system. The effect of parameters such as initial effective length of rodless cavity and meshing stiffness of gear-rack on the dynamic characteristics of transmission system for rolling mill were studied. The results show that the increasing of the initial effective length of rodless cavity causes the system to gradually move from periodic motion to multiplier motion, and eventually to chaotic motion. Besides, the meshing stiffness of gear-rack causes the fluctuation for vibration displacement of primary gear and secondary gear-rack of upper roll at the initial moment, and has less effect on the movement state of primary gear of lower roll.

基金项目:
河南省高等学校重点科研项目(22A460007);2022年河南省重点研发与推广专项(222102220020);2022安阳市科技特派员
作者简介:
张瑜(1987-),男,博士,讲师 E-mail:z13464238735@sina.com
参考文献:

 [1]朱勇,姜万录,王梦,等.非线性时变力作用下液压缸爬行机理与抑制方法研究[J].农业机械学报, 2014, 45(3): 305-313.


Zhu Y, Jiang W L, Wang M, et al. Creeping mechanism and suppression methods of hydraulic cylinder under nonlinear time-varying force[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(3): 305-313.

[2]Xiang L, Zhang Y, Gao N, et al. Nonlinear dynamics of a multistage gear transmission system with multi-clearance[J]. International Journal of Bifurcation and Chaos, 2018,28(3):1850034.

图24有无考虑齿条基体变形的上轧辊二级齿条振动信号图

(a)振动加速度 (b)频谱图

Fig.24Vibration signal diagrams of secondary rack for upper roll with and without considering rack matrix deformation

(a)Vibration acceleration(b)Spectral diagram

[3]Yua W N, Mechefskea C K, Markus T. The dynamic coupling behaviour of a cylindrical geared rotor system subjected to gear eccentricities[J]. Mechanism and Machine Theory, 2017, (107): 105-122.

[4]Shi J F, Gou X F, Zhu L Y. Modeling and analysis of a spur gear pair considering multi-state mesh with time-varying parameters and backlash[J]. Mechanism and Machine Theory, 2019, (134): 582-603.

[5]凌启辉,赵前程,王宪,等.热连轧机工作辊水平-垂直非线性振动特性及抑制[J].中国机械工程,2017, 28(16): 1943-1950.

Ling Q H, Zhao Q C, Wang X, et al. Work roll horizontal-vertical nonlinear vibration characteristics and suppression of hot strip tandem mills[J]. China Mechanical Engineering,2017,28(16):1943-1950.

[6]曾令强,臧勇,郜志英,等.轧机整体耦合建模问题研究[J].机械工程学报,2015, 51(14): 46-53.

Zeng L Q, Zang Y, Gao Z Y, et al. Study on overall coupled modeling of the rolling mill[J]. Journal of Mechanical Engineering, 2015, 51(14): 46-53.

[7]刘晓潺,臧勇,郜志英,等.多方向耦合振动连轧机再生颤振建模及应用[J].中南大学学报:自然科学版,2017, 48(3): 635-643.

Liu X C, Zang Y, Gao Z Y,et al. Multidirectional regenerative chatter model of tandem rolling mills and its application[J].Journal of Central South University: Science and Technology,2017, 48(3): 635-643.

[8]王桥医,张秋波,崔明超,等.1850四辊铝带冷轧机动力学特性与机理研究[J].振动.测试与诊断,2021,41(5): 991-998,1038-1039.

Wang Q Y, Zhang Q B, Cui M C, et al. Dynamic characteristics and mechanism analysis of 1850 four-high aluminum strip cold rolling mill[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(5): 991-998, 1038-1039.

[9]张阳,孙建亮,杜东源.板带轧机柔性多体系统耦合动力学建模研究[J].机械强度,2019,41(4):799-806.

Zhang Y, Sun J L, Du D Y. Strip rolling mill′s flexible multi-body system coupling dynamic modeling research[J]. Journal of Mechanical Strength, 2019, 41(4):799-806.

[10]吴继民,张义方,朱小龙,等.轧机主传动系统在双源扰动作用下的动力学特性研究[J].振动工程学报,2019,32 (4):581-589.

Wu J M, Zhang Y F, Zhu X L, et al. Research on dynamic characteristics of main drive system in rolling mill under double source disturbance[J]. Journal of Vibration Engineering, 2019, 32(4):581-589.

[11]郭志强,常明瑞,任学平,等.不同间隙的轧机主传动系统的动态特性研究[J].机械强度,2019,41(6): 1504-1508.

Guo Z Q, Chang M R, Ren X P, et al. Study on the dynamic characteristics of the main drive system of rolling mill[J]. Journal of Mechanical Strength, 2019,41(6): 1504-1508.

[12]侯东晓,郭大武,陈小辉.基于动态轧制力的四辊轧机垂直-扭转耦合非线性振动特性研究[J].振动与冲击,2020, 39(20): 106-112.

Hou D X, Guo D W, Chen X H. A study on vertical-torsional coupled nonlinear vibration characteristics of 4-h rolling mill based on dynamic rolling force[J]. Journal of Vibration and Shock, 2020, 39(20): 106-112.

[13]刘彬,潘贵翔,李鹏,等.液压缸非线性刚度的轧机辊系振动分析[J].钢铁,2017, 52(3): 94-99.

Liu B,Pan G X,Li P, et al. Vibration analysis of roll system with nonlinear stiffness of hydraulic cylinde[J]. Iron and Steel,2017, 52(3): 94-99.

[14]高崇一,李建雄,魏云平.轧机主传动系统扭振响应数值模拟及结构失效研究[J].应用力学学报,2022, 39(2): 268-273.

Gao C Y, Li J X, Wei Y P. Numerical simulation on torsional vibration response of main drive system of rolling mill and structural failure analysis [J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 268-273.

[15]毛君,张瑜,孟辉,等.间隙条件下辊轧机两级传动系统动态特性分析[J].钢铁,2015,50(10):45-53.

Mao J, Zhang Y, Meng H, et al. Dynamic characteristics analysis of rolling mill secondary transmission system with clearances[J]. Iron and Steel, 2015, 50(10):45-53.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9