网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于数值仿真的1500 MPa级抗疲劳扭力梁管梁研制与性能评价
英文标题:Development and performance evaluation on 1500 MPa anti-fatigue torsion tubular beam based on numerical simulation
作者:李晓林1 李欢2 
单位:1.长春职业技术学院 机电学院 2.一汽奔腾轿车有限公司 
关键词:扭力梁 管梁 抗疲劳性 高频淬火 正向设计 
分类号:U466
出版年,卷(期):页码:2023,48(10):108-115
摘要:

 为提升扭力梁管梁的抗疲劳性,针对某电动出租车1500 MPa级抗疲劳扭力梁管梁的关键技术进行了研究,在完成管梁结构设计后,采用产品数值仿真和成形数值仿真技术分别验证了产品性能和可制造性能,完成了样件试制且通过了总成产品的试验验证,最终设计了一种既能满足抗疲劳性,又能实现轻量化和低成本要求的管梁正向开发技术。结果显示:在正向设计管梁结构时,需先利用侧倾中心反推出管梁剪切中心,再计算出管梁剪切中心,确定管梁X向和Z向位置后再进行结构的详细设计;产品数值仿真技术确认了管梁扭转刚度为435.5 N·m·deg-1、扭转耐久外应力为454 MPa,均满足产品性能要求;成形数值仿真技术显示管梁的最大减薄率为12.9%,满足可制造性要求;高频淬火后,管梁的抗拉强度从420~800 MPa提升至1300~1700 MPa;扭转耐久台架试验和道路试验表明,高频淬火后的管梁抗疲劳性约为非高频淬火管梁的4倍。

 In order to improve the fatigue resistance of the torsion tubular beam, the key technology of the 1500 MPa anti-fatigue torsion tubular beam of an electric taxi was studied, and after completing the design of the tubular beam structure, the product performance and manufacturability were verified by using the product numerical simulation and forming numerical simulation technology. Then, the prototype was completed and passed the test verification of the assembly product. Finally, a forward development technology for tubular beams that not only met the requirements of fatigue resistance, but also met the requirements of lightweight and low cost was designed. The results show that when designing the tubular beam structure forward, the shear center of the tubular beam should be firstly deduced from the side tilt center, and then the shear center of the tubular beam is calculated to determine the X and Z positions of the tubular beam before proceeding to detailed structure design. Torsional rigidity of the tubular beam 435.5 N·m·deg-1 and torsional durability external stress 454 MPa are confirmed by the product numerical simulation technology, which meet the product requirements.  Maximum thinning rate 12.9% of the tubular beam is showed by using the forming numerical simulation technology, which meets the requirements of manufacturability. After high-frequency quenching, the tensile strength of tubular beam is increased from 420-800 MPa to 1300-1700 MPa, and the torsional durability bench tests and road tests show that the fatigue resistance of the tubular beam after high-frequency quenching is about four times that of the non-high-frequency quenching tubular beam. 

基金项目:
吉林省教育厅科研产业处课题(JJKH20221360SK);吉林省科技发展计划项目(20200703018ZP)
作者简介:
李晓林(1981-),女,硕士,副教授 E-mail:20305930@qq.com
参考文献:

 
[1]徐小华.含硼钢管状扭力梁热处理脱碳层对疲劳性能的影响
[J].锻压技术,2021,46(4):235-240.


Xu X H.Effect of heat treatment decarburization layer on fatigue properties of boron-containing steel pipetorsion beam
[J].Forging & Stamping Technology,2021,46(4):235-240.


[2]Park J K, Kim Y S, Suh C H, et al. Hybrid quenching method of hot stamping for automotive tubular beams
[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2017,231(9):147-153.


[3]张旭,赵天会,代慈华,等.轻量化封闭截面式扭力梁横梁工艺分析
[J].汽车工程师,2018,(3):48-50.

Zhang X,Zhao T H,Dai C H,et al.Analysis on processing of lightweight closed cross sectional torsion beam
[J]. Automotive Engineer,2018,(3):48-50.


[4]张岩红,许东辉,冯海龙,等.支撑内压对某型高强钢扭力梁液压成形的影响
[J].锻压技术,2021,46(6):117-126. 

Zhang Y H,Xu D H,Feng H L,et al.Influence of supporting internal pressure on hydroforming for a certain type high-strength steel torsion beam
[J]. Forging & Stamping Technology,2021,46(6):117-126.


[5]黄晓峰,胡勇,易成坷,等.管状变截面汽车扭力梁内高压成形工艺
[J].精密成形工程,2018,10 (2):103 -108. 

Huang X F,Hu Y,Yi C K,et al.Hydroforming process of tubular variable cross section autmotive torsion beam
[J].Journal of Netshape Forming Engineering,2018,10 (2):103 -108.


[6]李秋寒,郭子峰,郭佳,等.500 MPa级汽车管状扭力梁横梁开裂分析
[J].中国冶金,2020,30(8):51-55,63.

Li Q H, Guo Z F, Guo J, et al.Crack analysis of 500 MPa automobile tubular torsion beam crossbeam
[J].China Metallurgy,2020,30(8):51-55,63.


[7]周澍,陈荣,徐沛瑶.轻型管状扭转梁的材料及退火工艺研究
[J].精密成形工程,2019,11 (2):81-86. 

Zhou S,Chen R,Xu P Y.Materials and annealing processes for lightweight tubular torsion beams
[J].Journal of Netshape Forming Engineering,2019,11 (2):81-86.


[8]黄晓峰,胡勇,易成坷,等.管状变截面汽车扭力梁内高压成形工艺
[J].精密成形工程,2018,10 (2):103-108. 

Huang X F,Hu Y,Yi C K,et al.Hydroforming process of tubular variable cross section autmotive torsion beam
[J].Journal of Netshape Forming Engineering,2018,10 (2):103-108.


[9]唐明松,王岩松,赵礼辉.扭力梁后桥耐久性快速评价
[J].机械强度,2017,39(1):183-187.

Tang M S, Wang Y S, Zhao L H. Rapid evaluation of durability of torsion beam rearbridge
[J]. Mechanical Strength, 2017,39(1):183-187.


[10]韩聪,张伟玮,苑世剑,等.预制坯形状对扭力梁内高压成形影响分析
[J].材料科学与工艺,2011,19 (4):1-5. 

Han C,Zhang W W,Yuan S J,et al.The influence analysis of internal high pressure forming preform shape of the torsion beam in high pressure
[J].Materials Science and Technology,2011,19 (4):1-5.


[11]张伟玮,韩聪,苑世剑,等.加载路径对扭力梁内高压成形壁厚分布和精度的影响
[J].材料科学与工艺,2012,20 (4):1-6. 

Zhang W W,Han C,Yuan S J,et al. Effect of loading paths on thickness distribution and precision of a hydroformed torsion beam
[J].Materials Science and Technology,2012,20 (4):1-6.


[12]周澍,陈荣,徐沛瑶.轻型管状扭转梁的材料及退火工艺研究
[J].精密成形工程,2019,11(2):81-86.

Zhou S,Chen R,Xu P Y.Materials and annealing processes for lightweight tubular torsion beams
[J].Journal of Netshape Forming Engineering,2019,11(2):81-86.


[13]崔俊佳,于海平,李春峰,等.高强钢板热冲压工艺中的相变模拟
[J].塑性工程学报,2013,20 (1):48-52. 

Cui J J,Yu H P,Li C F,et al. Phase transformation simulation of high strength steel under hot stamping process
[J].Journal of Plasticity Engineering,2013,20 (1):48-52.


[14]余凯,程和法,陈文琳,等.扭力梁热成形过程温度与微观组织的研究
[J].塑性工程学报,2017,24(3):109-114.

Yu K, Cheng H F, Chen W L,et al.Research on temperature and microstructure of torsion beam during hot forming
[J].Journal of Plasticity Engineering,2017,24(3):109-114.


[15]罗明军,赵永玲,宋立新,等.典型危险工况下汽车后扭力梁结构开裂分析
[J].机械强度,2014,36(1):81-85.

Luo M J,Zhao Y L,Song L X, et al.Crack analysis of automobile rear torsion beam under typical dangerous working conditions
[J].Mechanical Strength,2014,36(1):81-85. 


[16]毛玉婷.扭力梁悬架静动态性能分析与轻量化设计
[J].机床与液压,2020,48(20):60-65.

Mao Y T.Static and dynamic performance analysis and lightweight design of torsion beamsuspension
[J].Machine Tools and Hydraulics,2020,48(20):60-65.
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9