网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锤上模锻智能化发展现状及其关键技术
英文标题:Development status and its key technologies on intelligentization in hammer die forging
作者:夏云1  2 汪爱明1 叶洋3 刘振宇1 李祥龙1 赵启奔1 郭仲尧1 
单位:1.中国矿业大学(北京) 机械与电气工程学院 2. 中国矿业大学(北京)人工智能学院  3.煤炭科学技术研究院有限公司检测中心 
关键词:智能化锤上模锻 工业机械手 视觉定位 视觉控制 末端执行器 
分类号:T-19
出版年,卷(期):页码:2024,49(4):1-14
摘要:

 锤上模锻是制造煤矿机械的常见方法,智能化锤上模锻旨在实现无人锻造,解决传统锤上模锻招工难和成本高的问题。首先,以综采工作面刮板输送机的刮板等零件锤上模锻制造为例,介绍了传统锤上模锻生产线的一般工艺,在统计铸造、焊接、锻造等热加工技术智能化相关研究文献的基础上,指出模锻仍是智能热加工的薄弱环节,不能满足发展智能制造的要求;然后,详细分析了智能化模锻以及锤上模锻的现状,指出视觉识别定位、工业机械手末端执行器和工业机械手视觉控制是实现锤上模锻智能化的关键技术,并介绍了这3类技术的研究现状;最后,归纳了智能锤上模锻的研究难点,分析了研究煤矿机械智能化锤上模锻的理论意义与工程价值。

 Hammer die forging is a common method to make coal mining machinery, and the objective of intelligent hammer die forging is to realize unmanned forging and solve the problems of difficult recruitment and high cost of traditional hammer die forging. Therefore, for the hammer die forging manufacturing of scraper and other components for the scraper conveyor on fully mechanized face, the general process of the traditional hammer die forging production line was introduced, and based on a comprehensive review of research literature focused on the intelligentization of hot processing technologies including casting, welding, forging and so on, it was pointed out that the die forging was still the weak link of intelligent hot processing and could not meet the requirements of developing intelligent manufacturing. Furthermore, a detailed analysis of the status on intelligent die forging and hammer die forging was conducted, it was pointed out that the visual identification and positioning, end effector of industrial manipulator and visual control of industrial manipulator were key technologies for realizing the intelligentization in hammer die forging, and the research status of these three technologies was introduced. Finally, the research difficulties of intelligent hammer die forging were summarized, and the theoretical significance and engineering value of intelligent hammer die forging for coal mining machinery were analyzed.

基金项目:
国家自然科学基金资助项目(52374167)
作者简介:
作者简介:夏云(1979-),女,硕士,工程师 E-mail:xiayun@cumtb.edu.cn 通信作者:汪爱明(1982-),男,博士,副教授 E-mail:1666252993@qq.com
参考文献:

 [1]国务院.中国制造2025[J].国务院,2015,(5):1-17.


 

State Council. Made in China 2025[J]. State Council, 2015,(5):1-17.

 

[2]周济.智能制造——“中国制造2025”的主攻方向[J].中国机械工程,2015,26(17):2273-2284.

 

Zhou J. Intelligent manufacturing-The main direction of “Made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284.

 

[3]路辉. 基于统一数据库平台的复杂热模锻工艺和模具智能设计支持系统[D]. 上海:上海交通大学, 2008.

 

Lu H. Intelligent Design Support System for Complex Hot Forging Processes and Dies Based on Unified Database Platform [D]. Shanghai:Shanghai Jiao Tong University, 2008.

 

[4]朱乃燔.锻压生产中的噪声及其控制[J].噪声与振动控制,1983,(6):13-18.

 

Zhu N F. Noise and its control in forging production [J]. Noise and Vibration Control, 1983,(6): 13-18.

 

[5]黄正武.有工业机器人的模锻生产自动线[J].重型机械,1983,(11):65.

 

Huang Z W. Automatic production line for forging with industrial robots [J]. Heavy Machinery, 1983,(11): 65.

 

[6]BakhshiJooybari M, Pillinger I, Dean T A, et al. Application of product and process comparison criteria in an intelligent knowledgebased system for forging die design[A]. Proceedings of the 1996 Engineering Systems Design and Analysis Conference[C]. Montpellier,1996.

 

[7]BakhshiJooybari M, Pillinger I, Dean T A, et al. Development of product and process comparison criteria for an intelligent knowledgebased system for forging die design[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1996, 210(6): 565-578.

 

[8]Aziz E S, Chassapis C. Development of process optimization for an intelligent knowledgebased system for spur gear precision forging die design[A].International Design Engineering Technical Conferences and Computers and Information in Engineering Conference[C].Utah: The Association for the Advance of Artificial Intelligence, 2004.

 

[9]Padhy S K, Sharan R, Dwivedi S N, et al. Forging Die Design with Artificial Intelligence[M]. Berlin: Springer,1991.

 

[10]Srivastava S, Srivastava K, Sharma R S, et al. Modelling of hot closed die forging of an automotive piston with ANN for intelligent manufacturing[J]. NISCAIR Online Periodicals Repository, 2004,63(12):997-1005.

 

[11]Bae H Y, Kim H J, Paeng J I, et al. A study on shape recognition technology of die casting and forging parts based on robot vision for inspection process automation in limit environment[J]. Journal of the Korean Society of Industry Convergence, 2018, 21(6): 369-378.

 

[12]中国机械总院集团北京机电研究所有限公司.辊锻机器人,热模锻压力机机器人[Z]. 北京, 2003-01-01.

 

Beijing Research Institute of Mechanical & Electrical Technology Co., Ltd.CAM. Roll forging robot, hot forging press robot[Z]. Beijing,2003-01-01.

 

[13]信东辉.工业机器人热成型模锻智能装备与数字化车间[Z]. 浙江, 2018-08-21.

 

Xin D H. Intelligent equipment and digital workshop for industrial robot hot forming forging[Z]. Zhejiang,2018-08-21.

 

[14]张军.热模锻生产线物料在线智能检测及筛选装置开发[J].锻压装备与制造技术,2020,55(3):52-56.

 

Zhang J. Development of online intelligent detection and screening device for materials in hot forging production line [J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(3): 52-56.

 

[15]张军.热模锻生产线自动润滑冷却装置研发[J].锻压装备与制造技术,2020,55(4):34-37.

 

Zhang J. Research and development of the automatic lubricating and cooling device for a hot die forging production line [J]. China Metalforming Equipment & Manufacturing Technology, 2020, 55(4): 34-37.

 

[16]张军.热模锻生产线智能生产管理系统研发[J].锻造与冲压,2020,(13):59-62.

 

Zhang J. R&D of intelligent production management system for hot closeddie forging production line [J]. Forging & Metalforming, 2020,(13): 59-62.

 

[17]Yi D, Li D W, Cheng Q, et al. Design of intelligent conveying system for die forging production line[A]. 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)[C].Shanghai: IEEE, 2020.

 

[18]Ji Y L, Sun S W, Liu Z F, et al. Design and development of management and control system for intelligent die forging production line[A]. 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)[C].Shanghai: IEEE, 2020.

 

[19]冯若愚,陈桂华.基于PLC的凸轮模锻智能控制系统设计研究[J].内燃机与配件,2021,(9):121-122.

 

Feng R Y, Chen G H. Research on intelligent control system design of cam forging based on PLC [J]. Internal Combustion Engine & Parts, 2021,(9): 121-122.

 

[20]陈庆华,李艳梅,陈英俊,等.基于PLC的凸轮模锻智能控制系统设计[J].热加工工艺,2020,49(1):99-102.

 

Chen Q H, Li Y M, Chen Y J,et al. Design of intelligent control system for cam die forging based on PLC [J]. Hot Working Technology, 2020, 49(1): 99-102.

 

[21]郭强,崔静静,肖永祥. 面向模锻智能生产的动态监控系统研究[A]. 2020中国航空工业技术装备工程协会年会论文集[C]. 西安, 2020.

 

Guo Q, Cui J J, Xiao Y X. Research on dynamic monitoring system for intelligent forging production [A]. Proceedings of the 2020 Annual Conference of the China Aviation Industry Technical Equipment Engineering Association [C].Xi′an, 2020.

 

[22]崔静静,郭强,巫远波. 模锻智能制造过程数据实时采集技术[A]. 2020中国航空工业技术装备工程协会年会论文集[C]. 西安, 2020.

 

Cui J J, Guo Q, Wu Y B. Realtime data acquisition technology for intelligent forging manufacturing process [A]. Proceedings of the 2020 Annual Conference of the China Aviation Industry Technical Equipment Engineering Association [C]. Xi′an, 2020.

 

[23]杜利斌,邵明新.转向节热模锻中机器人夹具设计要点分析[J].科技创新导报,2019,16(3):95,97.

 

Du L B, Shao M X. Analysis of key points in design of robot fixture for steering knuckle hot forging [J]. Science and Technology Innovation Herald, 2019, 16(3): 95,97.

 

[24]谢子锋,陈荣标,张传龙,等.基于工业机器人的热模锻连杆锻造自动化生产系统研究[J].现代制造技术与装备,2020,(4):184-187.

 

Xie Z F, Chen R B, Zhang C L, et al. Research on automatic production system of hot die forging connecting rod based on industrial robot [J]. Modern Manufacturing Technology and Equipment, 2020,(4): 184-187.

 

[25]李猛. 热模锻压力机的远程监控与智能诊断系统研究[D].南京: 南京理工大学,2018.

 

Li M. Research on Remote Monitoring and Intelligent Diagnosis System of Hot Forging Press [D]. Nanjing:Nanjing University of Science and Technology, 2018.

 

[26]Cao C P, Li M, Li Y, et al. Intelligent fault diagnosis of hot die forging press based on binary decision diagram and fault tree analysis[J]. Procedia Manufacturing, 2018, 15: 459-466.

 

[27]Yang H C, Zheng C H, Chen Y Z, et al. Intelligent diagnosis of forging die based on deep learning[A]. 14th International Conference on Automation Science and Engineering (CASE)[C].Munich: IEEE, 2018.

 

[28]钱俊裕,张海燕,韩汉荣,等.基于人工智能的模锻工艺优化平台开发[J].宁波工程学院学报,2014,26(4):23-27.

 

Qian J Y, Zhang H Y, Han H R, et al. Development of a forging optimization platform based on artificial intelligence [J]. Journal of Ningbo University of Technology, 2014, 26(4): 23-27.

 

[29]姜思宇. 钛合金模锻工艺分析及工艺智能决策[D]. 北京:北京工业大学,2020.

 

Jiang S Y. Analysis of Titanium Alloy Forging Process and Intelligent Process Decision Making [D]. Beijing:Beijing University of Technology, 2020.

 

[30]孔祥伟, 王丹,杨树林,等.航空发动机模锻叶片计算机辅助智能设计平台开发[Z]. 沈阳, 2012-12-01.

 

Kong X W,Wang D,Yang S L, et al. Development of computeraided intelligent design platform for aerospace engine forging blades[Z]. Shenyang,2012-12-01.

 

[31]焦键.模锻过程结合机理与数据的智能控制方法探析——评《高端锻压制造装备及其智能化》[J].锻压技术,2021,46(6):237.

 

Jiao J. Analysis of intelligent control methods combining mechanism and data in forging process: Review of “Highend Forging Manufacturing Equipment and Its Intelligence”[J]. Forging & Stamping Technology, 2021, 46(6): 237.

 

[32]吴国庆,周井玲,沈世德,等. CZK-16智能全液压模锻锤[Z]. 南通, 2007-01-01.

 

Wu G Q,Zhou J L, Shen S D, et al. CZK-16 intelligent full hydraulic forging hammer[Z]. Nantong, 2007-01-01.

 

[33]吴国庆,周井玲,任雨松,等.模锻锤的智能控制方法及其根据该方法生产的智能模锻锤[Z]. 南通,2004-09-08.

 

Wu G Q,Zhou J L, Ren Y S,et al. Intelligent control method of forging hammer and intelligent forging hammer produced according to this method[Z]. Nantong, 2004-09-08.

 

[34]智能全液压模锻锤[J].技术与市场,2009,16(4):101.

 

Intelligent full hydraulic forging hammer [J]. Technology and Market, 2009, 16(4): 101.

 

[35]南通大学.CZK-16 kJ智能全液压模锻锤[Z]. 南通,2008-01-01.

 

Nantong University. CZK-16 kJ intelligent full hydraulic forging hammer[Z]. Nantong, 2008-01-01.

 

[36]南通大学.模锻锤的智能控制[Z].南通,2008-01-01.

 

Nantong University. Intelligent control of forging hammer[Z]. Nantong, 2008-01-01.

 

[37]江苏百协精锻机床有限公司.CHK-31.5 kJ智能全液压模锻锤[Z]. 南通, 2009-01-01.

 

Jiangsu Baixie Precision Forging Machinery Co.,Ltd..CHK-31.5 kJ intelligent full hydraulic forging hammer[Z]. Nantong,2009-01-01.

 

[38]江苏百协精锻机床有限公司.GHK-16 kJ智能全液压模锻锤[Z]. 南通,2009-01-01.

 

Jiangsu Baixie Precision Forging Machinery Co.,Ltd..GHK-16 kJ intelligent full hydraulic forging hammer[Z]. Nantong, 2009-01-01.

 

[39]Richard Szeliski. Computer Vision Algorithms and Applications[M].German:Springer,2012.

 

[40]卢冠男. 基于机器视觉的工业机器人抓取系统的研究[D]. 合肥:合肥工业大学,2017.

 

Lu G N. Research on Industrial Robot Gripping System Based on Machine Vision [D]. Hefei:Hefei University of Technology, 2017.

 

[41]Carsten Steger, Markus Ulrich, Christian Wiedemann.Machine Vision Algorithms and Applications[M].German:WileyVCH,2008.

 

[42]朱戈. 基于机器视觉的冲压自动化技术研究[D].杭州:中国计量大学,2016.

 

Zhu G. Research on Stamping Automation Technology Based on Machine Vision [D]. Hangzhou: China Jiliang University, 2016.

 

[43]Tsai R Y, Huang T S. The perspective view of three points[J]. IEEE Transaction on Pattern Analysis & Machine Intelligence, 1984,6(6): 13-27.

 

[44]党希超.基于视觉导向的机械手抓取定位技术研究[D]. 广州:华南理工大学,2013.

 

Dang X C. Research on Visualguided Robotic Hand Grasping and Positioning Technology [D]. Guangzhou: South China University of Technology, 2013.

 

[45]朱正伟.基于单目视觉的目标位姿识别与机器人抓取引导[D]. 广州:华南理工大学,2015.

 

Zhu Z W. Target Pose Recognition and Robotic Grasping Guidance Based on Monocular Vision [D]. Guangzhou:South China University of Technology, 2015.

 

[46]许贺作.基于双目立体视觉的柔性装卸机器人工件定位方法研究[D]. 重庆: 重庆理工大学,2018.

 

Xu H Z. Research on Workpiece Positioning Method of Flexible Handling Robot Based on Binocular Stereo Vision [D]. Chongqing:Chongqing University of Technology, 2018.

 

[47]杜县委.基于双目视觉的工件识别与机械手的定位抓取系统研究[D].青岛:山东科技大学, 2020.

 

Du X W. Research on Workpiece Recognition and Robotic Hand Positioning and Grasping System Based on Binocular Vision [D]. Qingdao:Shandong University of Science and Technology, 2020.

 

[48]Bay H, Ess A, Tuytelaars T, et al. Speededup robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.

 

[49]Lowe D G. Distinctive image features from scaleinvariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

 

[50]Okamoto A, Wasa Y, Kagawa Y. Development of shape measurement system for hot large forgings[J]. Research and Development Kobe Steel Engineering Reports, 2007, 57(3): 29-33.

 

[51]吴瑞敏.大尺寸高温锻件双目视觉测量技术[D]. 大连:大连理工大学, 2008.

 

Wu R M. Binocular Vision Measurement Technology for Largesized Hightemperature Forgings [D]. Dalian: Dalian University of Technology, 2008.

 

[52]李哲林.基于CCD的长轴类高温大锻件三维尺寸测量的研究[D]. 广州:华南理工大学, 2013.

 

Li Z L. Research on Threedimensional Dimensional Measurement of Long Shaftlike Hightemperature Large Forgings Based on CCD [D].Guangzhou: South China University of Technology, 2013.

 

[53]刘斌.基于双目立体视觉的大锻件尺寸在位测量关键技术研究[D]. 秦皇岛:燕山大学, 2010.

 

Liu B. Research on Key Technologies for Insitu Measurement of Large Forging Dimensions Based on Binocular Stereo Vision [D]. Qinhuangdao:Yanshan University, 2010.

 

[54]裴善强.大型锻件多目视觉测量识别系统研究[D].淮南:安徽理工大学,2020.

 

Pei S Q. Research on Multicamera Vision Measurement and Recognition System for Large Forgings [D]. Huainan:Anhui University of Science and Technology, 2020.

 

[55]邢作常.基于计算机视觉的典型热态农机锻件几何参数测量研究[D]. 沈阳: 沈阳农业大学,2016.

 

Xing Z C. Research on Geometric Parameter Measurement of Typical Hotstate Agricultural Machinery Forgings Based on Computer Vision [D]. Shenyang:Shenyang Agricultural University, 2016.

 

[56]Wang A M, Zhu Y K, Xu Q B, et al. Study on the recognition of malposition and location of hightemperature forgings in robotised die forging process based on machine vision[J]. IEEE Sensors Journal, 2020, 21(4): 4839-4854.

 

[57]徐琪彪. 模锻刮板机器视觉位置识别方法研究[D]. 北京:中国矿业大学(北京), 2021.

 

Xu Q B. Research on Machine Vision Position Recognition Method for Forging Scraper [D]. Beijing:China University of Mining and Technology (Beijing), 2021.

 

[58]Okada T. Computer control of multijointed finger system for precise objecthandling[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(3): 289-299.

 

[59]Jacobsen S C, Wood J E, Knutti D F, et al. The UTAH/MIT dexterous hand: Work in progress[J]. The International Journal of Robotics Research, 1984, 3(4):21-50.

 

[60]Salisbury K S, Vassura G. Kinematics and force analysis of articulated mechanical hands[J]. Journal of Mechanism Transmissions and Actuation in Design, 1983, (105):35-41.

 

[61]Skaar S B, Ruoff C F.Teleoperation and robotics in space[J].Progress in Astronautics & Aeronautics, 2015.

 

[62]Bekey G A, Tomovic R, Zeljkovic I. Dextrous Robot Hands[M]. New York: Springs, 1990.

 

[63]Melchiorri C, Vassura G.Mechanical and control features of the university of bologna hand Version 2[A]. Proceedings of the 1992 lEEE/RSJ International Conference on IEEE[C].Raleigh, NC:IEEE,1992.

 

[64]Caffaz A, Cannata G. The design and development of the DISThand dextrous gripper[A]. Proc. IEEE International Conference on Robotics and Automation[C]. Leuven:IEEE,1998.

 

[65]Gazeau J P, Zeghloul S, Arsicualt M, et al. The LMS hand: Force and position controls in the aim of fine manipulation of objects[A].IEEE International Conference on Robotics and Automation[C]. South Korea:IEEE, 2001.

 

[66]Lovchik C S, Diftler M A. A dexterous robot hand for space[A]. Proceedings of 1999 IEEE International Conference on Robotics and Automation[C]. Detroit, MI:IEEE,1999.

 

[67]Butterfass J, Grebenstein M, Liu H, et al. DLRHand II: Next generation of a dextrous robot hand[A]. Proceedings of 2001 ICRA. IEEE International Conference on Robotics and Automation [C]. Seoul:IEEE,2001.

 

[68]Fukaya N, Toyama S, Asfour T, et al. Design of the TUAT/Karlsruhe humanoid hand[A]. International Conference on Intelligent Robots and Systems (IROS 2000)[C].Takamatsu: IEEE, 2000.

 

[69]Thieiry L, Birglen L, Gosselin C M. Underactuation in robotic grasping hands[J]. Machine Intelligence and Robotic Control, 2002, 4(3): 1-11.

 

[70]Nuttall A J G, Klein Breteler A J. Compliance effects in a parallel jaw gripper[J]. Mechanism and Machine Theory, 2003, 38:1509-1522.

 

[71]Tuffield P, Elias H. The shadow robot mimics humanActions[J]. Industrial Robot:An International Journal, 2003, 30(1):56-60.

 

[72]Kamikawa Y, Maeno T. Underactuated fivefinger prosthetic hand inspired by grasping force distribution of humans[A]. RSJ International Conference on Intelligent Robots and System[C]. Nice: IEEE, 2008.

 

[73]Steffen W R, Christoper P, Georg H, et al. Experimental evaluation of the schunk 5-finger gripping hand for grasping tasks[A]. International Conference on Robotics and Biomimetics[C]. Bali: IEEE, 2015.

 

[74]Chen F, Carbonari L, Canali C, et al. Design of a novel dexterous robotic gripper for inhand twisting and positioning within assembly automation[J]. Assembly Automation, 2015, 35(3): 259-268.

 

[75]王国庆,李大寨,钱锡康,等. 新型三指灵巧机械手的研究[J].机械工程学报,1997,33(3):71-75.

 

Wang G Q, Li D Z, Qian X K, et al. Developing of a new dexterous threefingered hand [J]. Journal of Mechanical Engineering, 1997, 33(3): 71-75.

 

[76]罗建国,何茂艳,薛钟霄,等. 灵巧手研究现状及挑战[J]. 机械设计, 2009, 26(10):4-8.

 

Luo J G, He M Y, Xue Z X, et al. Current situation and challenges on the study of dexterous hand [J]. Mechanical Design, 2009, 26(10): 4-8.

 

[77]Zhang W Z, Chen Q, Sun Z G, et al. Underactuated passive adaptive grasp humanoid robot hand with control of grasping force[A]. IEEE Conf. on Robotics and Automation[C]. Taipei: IEEE, 2003.

 

[78]Liu Y, Mei T, Liang B, et al. Multisensory gripper and local autonomy of extrave hicular mobile robot[A]. International Conference on Robotics and Automation[C]. New Orleans, LA: IEEE, 2004.

 

[79]张文增, 陈强, 孙振国,等. 高欠驱动的拟人机器人多指手[J]. 清华大学学报:自然科学版, 2004, 44(5):597-600.

 

Zhang W Z, Chen Q, Sun Z G, et al. Super underactuated humanoid robot multifingered hand [J]. Journal of Tsinghua University: Science and Technology, 2004, 44(5):597-600.

 

[80]林龙贤. 果蔬采摘欠驱动机械爪研究[D]. 杭州:浙江大学,2013.

 

 Lin L X. Research on Underactuated Mechanical Claw for Fruit and Vegetable Harvesting [D]. Hangzhou:Zhejiang University, 2013.

 

[81]何雪军,王进,陆国栋,等. 自锁式茶梗夹持器设计[J]. 农业机械学报,2014,45(4):157-162.

 

He X J, Wang J, Lu G D, et al. Design of selflocking gripper for tea stalks [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 157-162.

 

[82]郝凯强,平雪良,李巍. 基于Pro/E和Workbench的炉窑直角搬运机器人结构设计与分析[J]. 机械传动,2014,38(7):100-103.

 

Hao K Q, Ping X L, Li W. Structural design and analysis of cartesian transfer robot used in furnace based on Pro/E and Workbench [J]. Journal of Mechanical Transmission, 2014, 38(7): 100-103.

 

[83]杨依领,傅雷,田埂,等. 集成位置/力传感器的桥式压电微夹持器[J]. 机器人,2015,(6):655-662.

 

Yang Y L, Fu L, Tian G, et al. A bridgetype piezoelectric microgripper with integrated position/force sensors [J]. Robot, 2015, (6): 655-662.

 

[84]胡俊峰,蔡建阳,郑昌虎. 一种具有力传感的微夹持器设计与标定[J]. 电子测量与仪器学报,2016,(3):407-415.

 

Hu J F, Cai J Y, Zheng C H. Design and calibration of a microgripper with force sensing [J]. Journal of Electronic Measurement and Instrumentation, 2016, (3): 407-415.

 

[85]Shirai Y, Inoue H. Guiding a robot by visual feedback in assembling tasks[J]. PatternRecognition, 1973, 5(2):99-106.

 

[86]Weiss L E, Sanderson A C, Neuman C P. Dynamic sensorbased control of robotswith visual feedback[J]. IEEE Journal on Robotics & Automation, 1987,7(5):404-417.

 

[87]Harrell R C, Slaughter D C, Adsit P D. A fruittracking system for roboticharvesting[J]. Machine Vision and Applications, 1989, 2(2):69-80.

 

[88]Hill J. Real time control of a robot with a mobile camera[A]. Proc. 9th Int. Symp. on Industrial Robots[C]. Washington, DC: the Society of Manufacturing Engineers, 1979.

 

[89]Chaumette F. Potential Problems of Stability and Convergence in Imagebased and Positionbased Visual Servoing[M].London: Springer London, 2007.

 

[90]Chaumette F, Malis E. 2 1/2 D visual servoing: A possible solution to improve imagebased and positionbased visual servoings[A]. International Conference on Robotics and Automation. Symposia Proceedings[C]. San Francisco, CA: IEEE, 2000.

 

[91]Espiau B. Effect of camera calibration errors on visual servoing in robotics[A]. The 3rd International Symposium[C].Heidelberg: Springer Berlin Heidelberg, 2005.

 

[92]Espiau B, Chaumette F, Rives P. A new approach to visual servoing in robotics[J].IEEE Transactions on Robotics & Automation, 1992, 8(3):313-326.

 

[93]陶辉. 单目视觉伺服模块化机械臂控制系统研究[D]. 武汉:武汉科技大学,2011.

 

Tao H. Research on Modular Robotic Arm Control System with Monocular Vision Servo [D]. Wuhan:Wuhan University of Science and Technology, 2011.

 

[94]蔡伟东. 机械臂视觉伺服控制方法研究[D]. 哈尔滨: 哈尔滨工业大学,2016.

 

Cai W D. Research on Servo Control Method of Robotic Arm Vision [D]. Harbin:Harbin Institute of Technology, 2016.

 

[95]曹家军. 基于视觉伺服的机械臂智能控制系统设计[D]. 大连: 大连理工大学,2021.

 

Cao J J. Design of Intelligent Control System for Robotic Arm Based on Visual Servo [D]. Dalian:Dalian University of Technology, 2021.

 

[96]彭叶予光,张志鹏.基于随机搜索树法的机械臂视觉伺服研究[J].制造业自动化,2022,44(1):156-159.

 

Peng Y Y G, Zhang Z P. Manipulator visual servo based on random search tree method [J]. Manufacturing Automation, 2022, 44(1): 156-159.

 

[97]王勇. 面向双机械臂系统的视觉伺服控制研究[D].广州:广东工业大学,2017.

 

Wang Y. Research on Visual Servo Control for Dual Robotic Arm System [D]. Guangzhou: Guangdong University of Technology, 2017.

 

[98]顾金麟. 超冗余机械臂无标定视觉伺服技术研究[D].长春:中国科学院长春光学精密机械与物理研究所,2022.

 

Gu J L. Research on Uncalibrated Visual Servo Technology for HyperRedundant Robotic Arms [D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022.

 

[99]李小龙. 基于改进QLearning的机械臂无标定视觉伺服控制系统研究[D]. 重庆:重庆大学,2021.

 

Li X L. Research on Uncalibrated Visual Servo Control System of Robotic Arm Based on Improved QLearning [D]. Chongqing:Chongqing University, 2021.

 

[100]程亮玮. 工业机械臂的无标定视觉伺服系统研究[D].绵阳:西南科技大学,2021.

 

Cheng L W. Research on Uncalibrated Visual Servo System of Industrial Robotic Arm [D]. Mianyang:Southwest University of Science and Technology, 2021.

 

[101]王琥. 基于6-DOF工业机械臂双目视觉伺服控制系统研究[D].南宁:广西大学,2016.

 

Wang H. Research on Dual Vision Servo Control System Based on 6-DOF Industrial Robotic Arm [D]. Nanning:Guangxi University, 2016.

 

[102]季江飞. 基于神经网络的机械臂视觉伺服控制研究[D].杭州:浙江理工大学,2022.

 

Ji J F. Research on Visual Servo Control of Robotic Arm Based on Neural Network [D]. Hangzhou: Zhejiang SciTech University, 2022.

 

[103]余晓兰,万云,陈靖照.基于改进BP神经网络的食品分拣机器人视觉伺服控制方法[J].食品与机械,2021,37(8):126-131,135.

 

Yu X L, Wan Y, Chen J Z. Visual servo control method of food sorting robot based on improved BP neural network [J]. Food & Machinery, 2021, 37(8): 126-131,135.

 

[104]赵航,岳晓峰,方博,等.基于PSOGABP神经网络的视觉伺服控制系统[J].吉林大学学报: 信息科学版,2020,38(2):172-178.

 

Zhao H, Yue X F, Fang B, et al. Visual servo control system based on PSOGABP neural network [J]. Journal of Jilin University:Information Science Edition, 2020, 38(2): 172-178.

 

[105]岳晓峰,阳建峰,马国元, 等.基于遗传优化RBF神经网络的机器人无标定视觉伺服控制[J].计算机与数字工程,2020,48(11):2617-2621.

 

Yue X F, Yang J F, Ma G Y, et al. Robotic uncalibrated visual servo control based on genetic optimization RBF neural network [J]. Computer & Digital Engineering, 2020, 48(11): 2617-2621.

 

[106]罗彪,欧阳志华,易昕宁, 等.基于自适应动态规划的移动机器人视觉伺服跟踪控制[J].自动化学报, 2023, 48(2):1-11.

 

Luo B, Ouyang Z H, Yi X N, et al. Visual servo tracking control of mobile robot based on adaptive dynamic programming [J]. Acta Automatica Sinica, 2023, 48(2): 1-11.

 

[107]姜易木. 基于机器人动力学模型的视觉伺服控制研究[D]. 哈尔滨:哈尔滨工业大学,2021.

 

Jiang Y M. Research on Visual Servo Control Based on Robot Dynamic Model [D]. Harbin:Harbin Institute of Technology, 2021.

 
服务与反馈:
本网站尚未开通全文下载服务】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9