网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
拉拔自激振动方程及其数值算法分析
英文标题:Analysis on drawing self-excited vibration equation and its numerical algorithm
作者:曹益忠1 2 袁豪1 哈达1 2 张卫荣1 2 冯金刚1 2 
单位:1.太原理工大学 机械与运载工程学院 山西 太原 030024   2.先进金属复合材料成形技术与装备教育部工程研究中心 山西 太原 030024 
关键词:机械系统追逐现象 拉拔 质量模块 摩擦力 振动 
分类号:TH123+.1
出版年,卷(期):页码:2024,49(5):76-83
摘要:

 针对拉拔加工过程中常发生“追逐”或“跳跃”现象并诱发产生振动的问题,根据丁文镜教授提出的机械系统追逐现象微分控制方程,建立了拉拔自激振动的时变质量非线性微分控制方程,并利用移位的Chebyshev多项式函数对建立的微分方程进行数值求解。另外,给出3个具体的工况模拟问题,每个问题分别考虑了不同的阻尼系数、刚度系数、变质量函数和摩擦力,并绘制了相应的无量纲位移图和相图,通过数值仿真研究了质量模块和摩擦力分别变化时对拉拔过程的影响。结果表明:摩擦力呈线性或者周期性等变化时,对拉拔过程的振动位移产生较大的影响,而质量模块变化不会对拉拔结果产生影响。

 For the problem of vibration induced by “hunting” or “jumping” phenomenon in the process of drawing, the time-varying mass nonlinear differential control equation of self-excited vibration of drawing was established according to the differential control equation of hunting phenomenon proposed by Professor Ding Wenjing, and the differential equation was solved numerically by the shifted Chebyshev polynomial function. Then, three specific simulation problems of actual working conditions were given, and for each problem, different damping coefficients, stiffness coefficients, variable mass functions and friction forces were respectively considered. Furthermore, corresponding dimensionless displacement diagram and phase diagram were drawn, and the influences of mass module and friction force on the drawing process were studied by numerical simulation. The results show that when the friction force exhibits linear or periodic changes, it has a significant impact on the vibration displacement during the drawing process, while the change of mass module has not affect the drawing result.

 
基金项目:
基金项目:国家重点研发计划(2018YFA0707300)
作者简介:
作者简介:曹益忠(1982-),男,硕士,研究员 E-mail:cccyz2008@126.com
参考文献:

 
[1]丁文镜. 自激振动
[M]. 北京:清华大学出版社,2009.


 

Ding W J. Self-excited Vibration
[M].Beijing: Tsinghua University Press, 2009.

 


[2]杨桂瑜, 李微微, 石金英. PC钢绞线用钢丝高速优质拉拔工艺试验
[J]. 金属制品, 2015, 41(1):20-24.

 

Yang G Y, Li W W, Shi J Y. High speed and high-quality drawing technology test for PC steel strand
[J]. Metal Products, 2015, 41(1):20-24.

 


[3]唐华平, 钟掘. 单辊驱动轧机水平自激振动定性分析
[J]. 机械工程学报, 2001, 37(8):55-59.

 

Tang H P, Zhong J. Qualitative analysis of horizontal self-excited vibration of single-high drive mill
[J]. Journal of Mechanical Engineering, 2001, 37(8):55-59.

 


[4]侯东晓, 彭荣荣, 刘浩然. 变摩擦力下板带轧机辊系垂直-水平耦合振动特性
[J]. 东北大学学报:自然科学版, 2013,34(11):98-102. 

 

Hou D X, Peng R R, Liu H R. Vertical-horizontal coupling vibration characteristics of roll system in lower plate strip mill with variable friction
[J]. Journal of Northeastern University:Natural Science Edition, 2013,34(11):98-102.

 


[5]闫晓强. 热连轧机机电液耦合振动控制
[J]. 机械工程学报, 2011, 47(17):61-65.

 

Yan X Q. Electromechanical hydraulic coupling vibration control of hot rolling mill
[J]. Journal of Mechanical Engineering, 2011, 47(17):61-65.

 


[6]郜志英, 臧勇, 曾令强. 轧机颤振建模及理论研究进展
[J]. 机械工程学报, 2015, 51(16):87-105.

 

Gao Z Y, Zang Y, Zeng L Q. Progress in modeling and theoretical research on mill flutter
[J]. Journal of Mechanical Engineering, 2015, 51(16):87-105.

 


[7]陈程, 李友荣. 轧制润滑对轧机主传动系统自激振动影响
[J]. 振动与冲击, 2015, 34(16): 161-165.

 

Chen C, Li Y R. Effect of rolling lubrication on self-excited vibration of main drive system of rolling mill
[J]. Vibration and Impact, 2015, 34(16): 161-165.

 


[8]高亚南, 彭艳, 孙建亮, 等. 1580热连轧机F2精轧机振动综合测试与分析
[J]. 钢铁, 2013, 48(1): 52-58.

 

Gao Y N, Peng Y, Sun J L, et al. Comprehensive vibration test and analysis of F2 finishing mill for 1580 hot tandem mill
[J]. Steel & Iron, 2013, 48(1): 52-58.

 


[9]杨乃斌. 采用有限元方法分析轧机的振动及震颤现象
[J]. 一重技术, 1994,(1):139-152.

 

Yang N B. Vibration and vibration of rolling mill are analyzed by finite element method
[J]. CFHI Technology, 1994,(1):139-152.

 


[10]鲁晓燕, 叶黔元, 瞿志豪. 一类轧机自激振动现象的分析与解决
[J]. 上海理工大学学报, 2004, 26(2):141-145.

 

Lu X Y, Ye Q Y, Qu Z H. Analysis and solution of self-excited vibration of a kind of rolling mill
[J]. Journal of Shanghai University of Science and Technology, 2004, 26(2):141-145.

 


[11]郝淑英, 张建, 温殿英, 等. 冷拔钢管抖纹产生的机理及消除方法
[J]. 重型机械, 2001,(6):25-28.

 

Hao S Y, Zhang J, Wen D Y, et al. The mechanism and elimination method of chattering grain of cold drawn steel pipe
[J]. Heavy Machinery, 2001,(6):25-28.

 


[12]Erdbrink C D, Krzhizhanovskaya V V. Differential evolution for system identification of self-excited vibrations
[J]. Journal of Computational Science, 2015, 10:360-369.

 


[13]丁文镜. 工程中的自激振动
[M]. 长春:吉林教育出版社, 1988.

 

Ding W J. Self-excited Vibration in Engineering
[M]. Changchun:Jilin Education Press, 1988.

 


[14]万景元. 钢绞线拉拔工艺参数分析及系统研究
[D]. 天津:河北工业大学,2015.

 

Wan J Y. Analysis and Systematic Study on Drawing Process Parameters of Steel Strand
[D]. Tianjin:Hebei University of Technology,2015.

 


[15]Doha E H, Bhrawy A H, Ezz-Eldien S S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
[J]. Computers & Mathematics with Applications, 2011, 62(5):2364-2373.

 


[16]Zhao F Q, Huang Q X, Xie J Q, et al. Matrix method based on the shifted Chebyshev polynomials for solving fractional-order PDEs with initial-boundary conditions
[J]. Mathematical Methods in the Applied Sciences, 2017,(2):1114-1124.

 


[17]Xie J Q, Huang Q X, Yang X. Numerical solution of the one-dimensional fractional convection diffusion equations based on Chebyshev operational matrix
[J]. Springerplus, 2016, 5(1):1149.

 


[18]Bhrawy A H, Doha E H, Baleanu D, et al. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations
[J]. Journal of Computational Physics, 2015, 293:142-156.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9