网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
锻造自动化用高负重比气动机械手夹持臂及其轻量化
英文标题:High load ratio pneumatic manipulator gripper arm and its lightweight for forging automation
作者:徐悦鹏 姚宏亮 曾琦 李敬 田晓晓 李嘉鹏 焦麒安 
单位:(中国机械总院集团北京机电研究所有限公司 北京 100083) 
关键词:机械手 夹持臂 高负重比 模块化结构设计 轻量化设计 
分类号:TP241.2
出版年,卷(期):页码:2024,49(5):179-187
摘要:

 为解决自动化锻造生产中大质量坯料在各环节转移困难的问题,对机械手夹持臂的机械结构和驱动系统进行了设计,以实现机械手夹持臂的高负重比。通过SolidWorks对机械手设备进行三维建模,并完成动力源和直线导轨等机构的相关参数计算;对夹持臂进行静力学分析和结构优化,并通过机器人负载模拟平台对机械手的夹持性能进行验证。为满足产品经济性与生产制造的便利性,夹持臂采取模块化设计策略,其主体采用标准工字型钢材,夹钳和固定端通过焊接模块固定,并对整体结构进行了轻量化设计。结果表明:该机械手夹持臂轻量化后的质量为75 kg,在选用经济效益较高的KUKA KR210机器人情况下,最大负载为70 kg,机器手夹持臂的负重比达到1∶1.1。该夹持臂符合设计要求,其具有的高负重比将有利于大质量部件的高质量生产。

 

  In order to solve the problem that the heavy weight blanks are difficult to transfor in each process of automatic forging production, the mechanical structure and driving system of the gripper arm for manipulator were designed to achieve the high load ratio. Then, 3D modeling of  manipulator equipment was carried out by SolidWorks, and the calculation of related parameters for power source, linear guideway and other mechanisms was realized. Furthermore, the static analysis and structural optimization on the gripper arm were carried out, and the gripping performance of  manipulator was verified by the robot load simulation platform. In order to meet the economy of product and the convenience of manufacturing, the gripper arm applied the strategy of modular design, the main body was made of standard I-beam steel, the clamping and fixing ends were fixed by welding modules, and the overall structure was designed to be lightweight. The results show that the weight of the gripper arm for manipulator is 75 kg after lightweight, and when using the KUKA KR210 robot with higher economic benefits, the maximum load is 70 kg. The load ratio of the gripper arm reaches 1∶1.1, which meets the design requirements. Thus, its high load ratio is beneficial to the high-quality production of heavy weight components.

 
基金项目:
作者简介:
作者简介:徐悦鹏(1997-),男,硕士,助理工程师 E-mail:1379043016@qq.com
参考文献:

 
[1]史延辰, 岳海军, 韩薇, 等. 连杆自动化锻造生产线工艺设计
[J]. 锻造与冲压,2023, (1): 70-73.


 

Shi Y C, Yue H J, Han W, et al. Process design of automatic forging production line for connecting rod
[J]. Forging & Metalforming, 2023, (1): 70-73.

 


[2]李磊, 直银苹. 产业智能化助力锻造产业链韧性的机理与对策
[J]. 开放导报, 2023, (2): 69-78.

 

Li L, Zhi Y P. The mechanism and countermeasures of industrial intelligence to help forging industry chain resilience
[J]. China Opening Journal, 2023, (2): 69-78.

 


[3]金魏, 辛洪兵. 汽车前轴精辊成形自动辊锻机组搬运机器人的新设计
[J].北京工商大学学报:自然科学版,2004,(5):23-26.

 

Jin W, Xin H B. New design of handling robot for auto front axle precision roll forming automatic roll forging unit
[J]. Journal of Beijing Technology and Business University:Natural Science Edition,2004,(5):23-26.

 


[4]张南, 刘庆生, 曾琦, 等. 基于热模锻压力机曲轴锻造自动化生产线的时序设计与优化
[J]. 锻压技术, 2022, 47(1): 140-145.

 

Zhang N, Liu Q S, Zeng Q, et al. Time sequence design and optimization on automatic production line for crankshaft forging based on hot die forging press
[J]. Forging & Stamping Technology, 2022, 47(1): 140-145.

 


[5]赵兵,杨龙成,王传英, 等.机器人冲压生产线节拍仿真评估研究
[J].锻压装备与制造技术,2022,57(6):15-19.

 

Zhao B, Yang L C, Wang C Y, et al. Research on beat simulation evaluation of robot stamping production line
[J]. China Metalforming Equipment & Manufacturing Technology,2022,57(6):15-19.

 


[6]叶增林, 张良安, 吴守鹏, 等. 机器人液压机械臂运动性能分析与控制
[J]. 工程科学与技术, 2023,(10): 1-10.

 

Ye Z L, Zhang L A, Wu S P, et al. Motion performance analysis and control of robotic hydraulic manipulator arm
[J]. Advanced Engineering Sciences, 2023,(10):1-10.

 


[7]杨柳松,王富勇,郝兵, 等. 液压重载机械臂关节结构优化研究
[J]. 矿山机械, 2023, 51(7): 63-68.

 

Yang L S, Wang F Y, Hao B, et al. Research on joint structure optimization of hydraulic heavy-duty manipulator
[J]. Mining & Processing Equipment, 2023, 51(7): 63-68.

 


[8]林华钊. 一种新型气动肌肉执行器的结构设计与控制研究
[J]. 机电工程, 2023, 40(7): 1079-1085.

 

Lin H Z. Structure design and control of a new pneumatic muscle actuator
[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(7): 1079-1085.

 


[9]徐俊妍, 高广洋, 王海涛. 并联波纹管式气动柔性机械臂的动力学分析
[J]. 液压与气动, 2023, 47(8): 173-181.

 

Xu J Y, Gao G Y, Wang H T. Dynamic analysis of parallel bellows flexible pneumatic manipulator
[J]. Chinese Hydraulics & Pneumatics, 2023, 47(8): 173-181.

 


[10]张泰源, 张继忠, 崔向贵, 等. 专用锻造机械臂轻量化设计及仿真分析
[J].青岛大学学报:工程技术版,2021, 36(3): 6-11,21.

 

Zhang T Y, Zhang J Z, Cui X G, et al. Lightweight design and simulation analysis of special forging manipulator
[J]. Journal of Qingdao University:Engineering & Technology Edition, 2021, 36(3): 6-11,21.

 


[11]Zhao C, Wan X J, Zhou Z. Modeling and experimental design of a generalized gripper
[J]. Mechanism and Machine Theory, 2023, 181: 105205.

 


[12]张志豪,蒋东霖.轮胎自动装配机械手结构设计
[J].长春师范大学学报,2021,40(2):187-191.

 

Zhang Z H, Jiang D L. Structure design of automatic tire assembly manipulator
[J]. Journal of Changchun Normal University, 2021,40(2):187-191.

 


[13]Zhang B Y, Liao Z X, Yang P H, et al. Robotic visible forceps manipulator with a novel linkage bending mechanism
[J]. Journal of Mechanisms Robotics, 2019, 11(1): 011012.

 


[14]庄红超. 电驱动大负重比六足机器人结构设计及其移动特性研究
[D].哈尔滨:哈尔滨工业大学, 2016.

 

Zhuang H C.Electrically Driven Large-load-ratio Six-legged Robot Structural Design and Its Mobile Characteristics Research
[D]. Harbin:Harbin Institute of Technology, 2016.

 


[15]艾婷, 张永波, 饶爽, 等. 机械臂轻质高载荷比末端夹持器的设计
[J].机械研究与应用, 2019, 32(1): 105-107.

 

Ai T, Zhang Y B, Rao S, et al. Design of the end gripper of manipulator with light weight and high load ratio
[J]. Mechanical Research & Application, 2019, 32(1): 105-107.

 


[16]罗刚, 谢良喜, 加闯, 等. 液压机械臂的摆缸关节结构参数优化
[J]. 机床与液压, 2019, 47(13): 64-69.

 

Luo G, Xie L X, Jia C, et al. Parameters optimization of RAV of joint structure on hydraulic manipulator
[J]. Machine Tool & Hydraulics, 2019, 47(13): 64-69.

 


[17]李向阳, 杨桂茂, 安永辰. 夹钳式手部力分析及实验研究
[J]. 哈尔滨工业大学学报, 1985,(A6): 6-19.

 

Li X Y, Yang G M, An Y C. Force analysis and experiment of gripper
[J]. Journal of Harbin Institute of Technology,1985,(A6): 6-19.

 
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9