网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
基于NSDBO算法的超声振动挤压工艺参数优化
英文标题:Optimization on ultrasonic vibration extrusion process parameters based on NSDBO algorithm
作者:贾海利 孙锐 
单位:天津职业技术师范大学 
关键词:超声振动挤压加工 表面硬度 残余应力 NSDBO算法 预测模型 多目标优化 
分类号:TG376.1
出版年,卷(期):页码:2024,49(6):134-140
摘要:

为获得表面硬度和残余应力的最优组合,采用超声振动挤压工艺对304不锈钢工件进行正交实验,获取了加工数据;利用PSO-SVR算法和线性回归方法分别建立了表面硬度和残余应力的预测模型;采用NSDBO算法对加工参数(主轴转速、进给速度、超声功率及静挤压量)进行了多目标优化设计;最后,对求解获得的工艺参数组合进行实验并验证了其有效性。结果表明,主轴转速为115~347 r·min-1、进给速度为0.056~0.130 mm·r-1、静挤压量为49.8~71.7 μm、超声功率为20.155~32.206 W时,可获得表面硬度和残余应力之间的最佳平衡,此时残余应力为-373.175~-487.436 MPa、表面硬度为10.837~15.689 HRS。上述方法不仅可获得最优加工参数组合、提升表面性能和寿命,同时可以缩短实验周期、降低成本,提高加工效率,也为超声振动挤压加工技术在航空航天及其他工业领域中的应用提供了理论基础和实验支持。

In order to obtain the optimal combination of surface hardness and residual stress, the orthogonal experiment of 304 stainless steel workpiece was carried out by ultrasonic vibration extrusion process to obtain the processing data, and the prediction models of surface hardness and residual stress were established respectively by PSO-SVR algorithm and linear regression method. Then, the multi-objective optimization design on the processing parameters of spindle speed, feeding speed, ultrasonic power and static extrusion amount was conducted by NSDBO algorithm. Finally, the validity of the process parameters combination obtained from the solution was experimentally verified. The results show that the optimal balance between surface hardness and residual stress is obtained as the residual stress range of -373.175--487.436 MPa and the hardness range of 10.837-15.689 HRS when the spindle speed is 115-347 r·min-1, the feeding speed is 0.056-0.130 mm·r-1, the static extrusion amount is 49.8-71.7 μm and the ultrasonic power is 20.155-32.206 W. These methods can not only obtain the optimal combination of processing parameters, improve the surface properties and life, but also shorten the experimental period, reduce the cost, improve the machining efficiency, and also provide the theoretical basis and experimental support for the application of ultrasonic vibration extrusion processing technology in aerospace and other industrial fields.

基金项目:
2021年天津市新一代人工智能科技重大专项(21ZXJBGX00020)
作者简介:
作者简介:贾海利(1979-),女,博士,副教授,硕士生导师,E-mail:highly0811@163.com;通信作者:孙锐(1999-),男,硕士研究生,E-mail:sl2692492580@outlook.com
参考文献:

[1]王鑫,郑彬,赵运才. 机械零件的寿命影响因素分析[J]. 机械设计,2021,38(S1):87-90.


Wang X,Zheng B,Zhao Y C. Analysis of factors affecting the life of mechanical parts[J]. Journal of Machine Design,2021,38(S1):87-90.

[2]朱昌规.基于超声振动挤压的表面光整加工强化技术研究[D]. 南京:南京理工大学, 2021.

Zhu C G. Research on Strengthening Technology of Surface Finishing Based on Ultrasonic Vibration Extrusion [D]. Nanjing: Nanjing University of Science and Technology, 2021.

[3]Mousavi S A A A,Feizi H,Madoliat R. Investigations on the effects of ultrasonic vibrations in the extrusion process[J].Journal of Materials Processing Technology,2007,187:657-661.

[4]Deng G Y, Zhao X, Su L H,et al. Effect of high pressure torsion process on the microhardness, microstructure and tribological property of Ti6Al4V alloy[J]. Journal of Materials Science & Technology, 2021,94:183-195.

[5]Nouri M, Li D Y. Maximizing the benefit of aluminizing to AZ31 alloy by surface nanocrystallization for elevated resistance to wear and corrosive wear[J].Tribology International,2017,111:211-219.

[6]常金鑫,贾海利.基于响应曲面法的超声挤压工艺参数优化[J].新技术新工艺,2023,(8):60-66.

Chang J X, Jia H L. Optimisation of ultrasonic extrusion process parameters based on response surface method[J]. New Technology & New Process,2023,(8):60-66.

[7]Luo X, Ren X P, Jin Q, et al. Microstructural evolution and surface integrity of ultrasonic surface rolling in Ti6Al4V alloy[J],Journal of Materials Research and Technology,2021,13,1586-1598.

[8]查旭明,袁智,秦浩,等.钛合金超声冲击强化研究现状及发展趋势[J].中国机械工程,2023,34(19):2269-2287.

Zha X M,Yuan Z,Qin H,et al. Ultrasonic impact strengthening of titanium alloys:State-of-the-artand prospectives[J]. China Mechanical Engineering,2023,34(19):2269-2287.

[9]Lu X H, Jia Z Y, Wang H,et al. The effect of cutting parameters on micro-hardness and the prediction of Vickers hardness based on a response surface methodology for micro-milling Inconel 718[J].Measurement,2019, 140:56-62.

[10]陈云峰,尹丹青,倪锋. 超声滚压静压力对0Cr13Ni5Mo不锈钢残余应力和粗糙度的影响[J].锻压技术, 2023, 48 (10): 161-168.

Chen Y F,Yin D Q,Ni F. Influence of static pressure on residual stress and roughness during ultrasonic rolling for 0Cr13Ni5Mo stainless steel[J].Forging & Stamping Technology,2023, 48 (10): 161-168.

[11]Tang J Y, Shi Y, Zhao J Y,et al. Numerical modeling considering initial gradient mechanical properties and experiment verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by ultrasonic surface rolling[J].Surface and Coatings Technology,2023,452:129127.

[12]张剑飞,王磊,刘明,等.基于改进遗传算法优化BP神经网络的表面粗糙度误差预测[J].高师理科学刊,2023,43(7):33-40.

Zhang J F,Wang L,Liu M,et al. Prediction of surface roughness error based on BP neural network optimized by improved genetic algorithm[J]. Journal of Science of Teachers′ College and University, 2023,43(7):33-40.

[13]Zhao X, Ji Y X, Ning X L. Accelerometer calibration based on improved particle swarm optimization algorithm of support vector machine[J]. Sensors and Actuators A: Physical,2024,369:115096.

[14]Chen L P, Wang X C, Xia W J,et al. PSO-SVR predicting for the Ehull of ABO3-type compounds to screen the thermodynamic stable perovskite candidates based on multi-scale descriptors[J]. Computational Materials Science,2022,211:111435.

[15]易望远,尹瑞雪,田应权,等.数控铣削能耗预测及切削参数多目标优化研究[J].重庆理工大学学报:自然科学, 2024,38(3):240-249. 

Yi W Y,Yin R X,Tian Y Q,et al. Research on energy consumption prediction and multi-objective optimization of cutting parameters in CNC milling[J]. Journal of Chongqing University of Technology: Natural Science, 2024,38(3):240-249.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9