[1]姜银方, 王飞, 李新城,等. 基于正交试验和神经网络的激光拼焊板回弹预测 [J]. 塑性工程学报, 2009,16(3): 40-44.
Jiang Y F, Wang F, Li X C, et al. Study on springback prediction in laser TWBs forming based orthogonal experiment and neural network [J]. Journal of Plasticity Engineering, 2009, 16(3): 40-44.
[2]王吉权. BP神经网络的理论及其在农业机械化中的应用研究 [D]. 沈阳:沈阳农业大学, 2011.
Wang J Q. Research on BP Neural Network Theory and Its Application in Agricultural Mechanization [D]. Shenyang: Shenyang Agricultural University, 2011.
[3]詹梅, 杨合, 栗振斌. 管材数控弯曲回弹规律的有限元分析 [J]. 材料科学与工艺, 2004(4): 349-352.
Zhan M, Yang H, Li Z B. FEM numerical analysis of springback law of NC tube bending [J]. Materials Science and Technology, 2004(4): 349-352.
[4]巩伦庆, 吉晓民. 汽车翼子板的曲率对冲压回弹的影响研究 [J]. 机械设计, 2018, 35(12): 41-45.
Gong L Q, Ji X M. Study on the influence of curvature of automobile fender upon springback [J]. Journal of Machine Design, 2018, 35(12): 41-45.
[5]Akrichi S, Abbassi A, Abid S, et al. Roundness and positioning deviation prediction in single point incremental forming using deep learning approaches [J]. Adv. Mech. Eng., 2019, 11: 1-15.
[6]Jenab A, Sarraf I S, Green D E, et al. The use of genetic algorithm and neural network to predict rate-dependent tensile flow behaviour of AA5182-O sheets [J]. Mater. Des., 2016, 94: 262-273.
[7]王建华. 基于GPU的显式有限元快速计算方法及在车身设计制造中的应用 [D].长沙:湖南大学,2011.
Wang J H. Fast Calculation Method Based GPU of Explicit Finite Element and Application of Design and Manufacturing for Vehicle Body [D]. Changsha: Hunan University, 2011.
[8]滕菲, 梁继才, 张万喜, 等. 矩形截面型材三维拉弯成形的回弹预测 [J]. 华南理工大学学报(自然科学版), 2015(2): 107-113.
Teng F, Liang J C, Zhang W X, et al. Springback Prediction of Rectangular Profiles During Three-dimension Stretch Bending Forming [J]. Journal of South China University of Technology (Natural Science Edition), 2015(2): 107-113.
[9]陈光耀, 李恒, 贺子芮, 等. 基于机器学习的管材弯曲回弹有效预测与补偿 [J]. 中国机械工程, 2020, 31(22): 2745-2752.
Li G Y, Li H, He Z R, et al. Effective prediction and compensation of springbacks for tube bending using machine learning approach [J]. China Mechanical Engineering, 2020, 31(22): 2745-2752.
[10]占少伟, 龚俊杰, 韦源源, 等. 基于DPSO-BP神经网络的V形自由折弯成形角度和回弹预测 [J].锻压技术, 2023, 48(8): 151-157.
Zhan S W, Gong J J, Wei Y Y, et al. Prediction on V-shaped free bending angle and springback based on DPSO-BP neural network [J]. Forging & Stamping Technology, 2023,48(8):151-157.
[11]Prete D A, Primo T, Vitis D A A. Non deterministic approach in metal forming springback simulation [J]. Key Engineering Materials,2007, 67(344):399-410.
[12]Jamli M, Ariffin A, Wahab D. Integration of feedforward neural network and finite element in the draw-bend springback prediction [J]. Expert Systems with Applications, 2014, 41(8):3662-3670.
[13]Oliveira M C, Alves J L, Chaparro B M, et al. Study on the influence of work-hardening modeling in springback simulation accuracy of V-free bending [J]. International Journal of Plasticity, 2007, 23: 426-439.
[14]Welo T, Ringen G, Wang J. Smart control of springback in stretch bending of a rectangular tube by an artificial neural network [J]. Journal of Manufacturing Science and Engineering, 2024, 146: 040905.
[15]鄂大辛, 宁汝新, 唐承统, 等. 管材的回转牵引弯曲试验及回弹分析 [J]. 北京理工大学学报, 2006(5): 410-412, 432.
E D X, Ning R X, Tang C T, et al. Experiments and analysis on the spring-back in rotary-drawing tube bending [J]. Transactions of Beijing Institute of Technology, 2006(5):410-412, 432.
[16]张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述 [J].计算机工程与应用, 2021, 57(11):57-69.
Zhang C, Guo Y, Li M. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021,57(11):57-69.
[17]张慧. 深度学习中优化算法的研究与改进 [D]. 北京:北京邮电大学,2018.
Zhang H. Research and Improvement of Optimization Algorithms in Deep Learning [D]. Beijing: Beijing University of Posts and Telecommunications, 2018.
|