网站首页期刊简介编委会过刊目录投稿指南广告合作征订与发行联系我们English
一种基于DF系列改进的金属薄板韧性断裂准则
英文标题:An improved ductile fracture criterion for metal sheet based on DF series
作者:王丽红1 2 吕林1 
单位:1.郑州铁路职业技术学院 机车车辆学院 2.郑州铁路职业技术学院 河南省轨道交通智能安全工程技术研究中心 
关键词:韧性断裂 应力状态 非耦合准则 孔洞颈缩合并 孔洞生长 延性金属 
分类号:U287.1
出版年,卷(期):页码:2024,49(10):256-264
摘要:

为了精确地描述延性金属在不同应力状态下的断裂行为,通过对材料塑性变形时内部微观孔洞的形核、生长和聚合机制的分析,提出了一种改进的基于DF系列的韧性断裂准则,该准则充分考虑了孔洞颈缩合并机制对材料韧性断裂行为的影响,明确了准则中各参数的物理意义。利用此韧性断裂准则构建了AA 2024-T351铝合金和AISI 1045碳钢的等效断裂应变包络面,并将相应应力状态下的断裂应变预测值与此前学者们的试验结果进行了对比,验证了所提出的新准则的有效性。最后,将预测结果与广泛使用的DF2016准则、Hu准则和穆磊准则的预测结果进行比较,结果表明,相较于其他3种模型,提出的新准则的平均预测误差与最大预测误差最小,预测精度最高,孔洞颈缩合并机制在延性金属断裂过程中发挥了重要作用,应当充分考虑。

To accurately describe the fracture behavior of ductile metal under different stress states, an improved ductile fracture criterion based on the DF series was proposed by analyzing the mechanism of nucleation, growth and polymerization of internal micro-voids for materials during plastic deformation, which fully considered the influence of void necking coalescence mechanism on the ductile fracture behavior of material, and the physical meaning of each parameter was clarified. Then, the equivalent fracture strain envelope surfaces of AA 2024-T351 aluminum alloy and AISI 1045 carbon steel were constructed by the proposed ductile fracture criterion, and the predicted fracture strain values under corresponding stress states were compared with the experimental results of previous scholars to verify the effectiveness of the proposed new criterion. Finally, the predicted results are compared with those of the widely used DF2016, Hu and Mu Lei criteria. The results show that compared with the other three kinds of models, the proposed new criterion has the lowest average prediction error and the maximum prediction error, and the prediction accuracy is highest. Thus, the mechanism of void necking coalescence plays an important role in fracture process of ductile metal and should be fully considered. 

基金项目:
河南省高等学校重点科研项目(24B580007);郑州铁路职业技术学院科技攻关项目(2024KY008)
作者简介:
作者简介:王丽红(1980-),女,硕士,副教授,E-mail:honly_lee@sina.com
参考文献:

[1]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.


[2]Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169.

[3]Needleman A, Tvergaard V. An analysis of ductile rupture in notched bars[J]. Journal of the Mechanics and Physics of Solids, 1984, 32(6): 461-490.

[4]He Z, Zhu H, Hu Y M. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences, 2021, 192: 106081.

[5]董建鹏, 王时龙, 周杰, 等. 基于修正GTN模型的不锈钢管剪切过程韧性断裂准则研究[J]. 工程力学, 2021, 38(3): 239-247.

Dong J P, Wang S L, Zhou J, et al. The ductile fracture criterion of stainless-steel tubes in the shearing process based on modified GTN model[J]. Engineering Mechanics, 2021, 38(3): 239-247.

[6]Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the Asme Journal of Engineering Materials and Technology, 1985, 107(1): 83-89.

[7]Andrade F X C, Feucht M, Haufe A, et al. An incremental stress state dependent damage model for ductile failure prediction[J]. International Journal of Fracture, 2016, 200(1): 127-150.

[8]梁宾, 赵岩, 赵清江, 等. 基于Gissmo失效模型的6016铝合金板材断裂行为研究及应用[J]. 机械工程学报, 2019, 55 (18): 53-62.

Liang B, Zhao Y, Zhao Q J, et al. On the prediction of failure in 6016 aluminum alloy sheet by gissmo damage model[J]. Journal of Mechanical Engineering, 2019, 55 (18): 53-62.

[9]Rice J R, Tracey D M.On the ductile enlargement of voids in triaxial stress fields[J].Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217.

[10]Cockcroft M C, Latham D J. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96(1): 33-39.

[11]Wierzbicki T L, Bao Y B, Lee Y W, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences, 2005, 47(4-5): 719-743.

[12]Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory[J]. Engineering Fracture Mechanics, 2008, 75(11): 3276-3293.

[13]Bai Y L, Wierzbicki T. Application of extended Mohr-Coulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161(1): 1-20.

[14]李文超, 景媛. 一种改进的Xue-Wierzbicki延性断裂模型[J]. 塑性工程学报, 2022, 29(11): 127-137.

Li W C, Jing Y. A modified Xue-Wierzbicki ductile fracture model[J]. Journal of Plasticity Engineering, 2022, 29(11): 127-137.

[15]Pathak N, Adrien J, Butcher C, et al. Experimental stress state-dependent void nucleation behavior for advanced high strength steels[J]. International Journal of Mechanical Sciences, 2020, 179(1): 105661.

[16]Beremin F M. Cavity formation from inclusions in ductile fracture of A508 steel[J]. Metallurgical Transactions A, 1981, 12(5): 723-731.

[17]Malcher L, Pires F M A, De Sá J M A C. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2012, 30: 81-115.

[18]Weck A, Wilkinson D S. Experimental investigation of void coalescence in metallic sheets containing laser drilled holes[J]. Acta Materialia, 2008, 56(8): 1774-1784.

[19]Lou Y S, Huh H, Lim S, et al. New ductile fracture criterion for prediction of fracture forming limit diagrms of sheet metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.

[20]Bao Y B, Wierzbicki T. On the cut-off value of negative triaxiality for fracture[J]. Engineering Fracture Mechanics, 2005, 72(7): 1049-1069.

[21]Khan A S, Liu H W. A new approach for ductile fracture prediction on Al 2024-T351 alloy[J]. International Journal of Plasticity, 2012, 35: 1-12.

[22]Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80.

[23]Lou Y S, Chen L, Clausmeyer T, et al. Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals[J]. International Journal of Solids and Structures, 2017, 112: 169-184.

[24]Hu Q, Li X F, Han X H, et al. A new shear and tension based ductile fracture criterion: Modeling and validation[J]. European Journal of Mechanics-A/Solids, 2017, 66: 370-386.

[25]穆磊. 面向先进高强钢的韧性断裂预测模型研究与应用[D]. 北京: 北京科技大学, 2018.

Mu L. Research and Application of Toughness Fracture Prediction Model for Advanced High Strength Steels[D]. Beijing: University of Science and Technology Beijing, 2018.

[26]胡启. 轻质高强板塑性变形的各向异性屈服准则与失效模型的理论研究[D]. 上海: 上海交通大学, 2019.

Hu Q. Theoretical Study of Anisotropic Yield Criterion and Failure Model for Plastic Deformation of Lightweight High-Strength Plate[D]. Shanghai: Shanghai Jiao Tong University, 2019.

[27]鞠珂. 非耦合韧性断裂准则的理论模型研究[D]. 上海: 上海交通大学, 2020.

Ju K. Theoretical Modeling of Uncoupled Ductile Fracture Criterion[D]. Shanghai: Shanghai Jiao Tong University, 2020.

[28]贾哲. 基于孔洞演化行为的铝合金韧性断裂模型研究与应用[D]. 北京: 北京科技大学, 2022.

Jia Z. Research and Application of Aluminum Alloy Toughness Fracture Model Based on Pore Evolution Behavior[D]. Beijing: University of Science and Technology Beijing, 2022.

[29]Chang Z D, Chen J. A new void coalescence mechanism during incremental sheet forming: Ductile fracture modeling and experimental validation[J]. Journal of Materials Processing Technology, 2021, 298: 117319.

[30]Vershinin V V. Validation of metal plasticity and fracture models through numerical simulation of high velocity perforation[J]. International Journal of Solids and Structures, 2015, 67-68: 127-138.

[31]Bai Y L, Teng X Q, Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing[J]. Journal of Engineering Materials and Technology, 2009, 131(2): 13-22.
服务与反馈:
文章下载】【加入收藏
《锻压技术》编辑部版权所有

中国机械工业联合会主管  中国机械总院集团北京机电研究所有限公司 中国机械工程学会主办
联系地址:北京市海淀区学清路18号 邮编:100083
电话:+86-010-82415085 传真:+86-010-62920652
E-mail: fst@263.net(稿件) dyjsjournal@163.com(广告)
京ICP备07007000号-9